Nader M Boshta, Michael Lewash, Meryem Köse, Vigneshwaran Namasivayam, Soumya Sarkar, Jan H Voss, Andy J Liedtke, Anna Junker, Maoqun Tian, Anne Stößel, Mahmoud Rashed, Ahmed Mahal, Nicole Merten, Cécile Pegurier, Jörg Hockemeyer, Evi Kostenis, Christa E Müller
{"title":"Discovery of Anthranilic Acid Derivatives as Antagonists of the Pro-Inflammatory Orphan G Protein-Coupled Receptor GPR17.","authors":"Nader M Boshta, Michael Lewash, Meryem Köse, Vigneshwaran Namasivayam, Soumya Sarkar, Jan H Voss, Andy J Liedtke, Anna Junker, Maoqun Tian, Anne Stößel, Mahmoud Rashed, Ahmed Mahal, Nicole Merten, Cécile Pegurier, Jörg Hockemeyer, Evi Kostenis, Christa E Müller","doi":"10.1021/acs.jmedchem.4c01755","DOIUrl":null,"url":null,"abstract":"<p><p>The G protein-coupled receptor 17 (GPR17) is an orphan receptor involved in inflammatory diseases. GPR17 antagonists have been proposed for the treatment of multiple sclerosis due to their potential to induce remyelination. Potent, selective antagonists are required to enable target validation. In the present study, we describe the discovery of a novel class of GPR17 antagonists based on an anthranilic acid scaffold. The compounds' potencies were evaluated in calcium mobilization and radioligand binding assays, and structure-activity relationships were analyzed. Selected antagonists were additionally studied in cAMP and G protein activation assays. The most potent antagonists were 5-methoxy-2-(5-(3'-methoxy-[1,1'-biphenyl]-2-yl)furan-2-carboxamido)benzoic acid (<b>52</b>, PSB-22269, K<sub>i</sub> 8.91 nM) and its 3'-trifluoromethyl analog (<b>54</b>, PSB-24040, K<sub>i</sub> 83.2 nM). Receptor-ligand docking studies revealed that the compounds' binding site is characterized by positively charged arginine residues and a lipophilic pocket. These findings yield valuable insights into this poorly characterized receptor providing a basis for future drug development.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":" ","pages":"19365-19394"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01755","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The G protein-coupled receptor 17 (GPR17) is an orphan receptor involved in inflammatory diseases. GPR17 antagonists have been proposed for the treatment of multiple sclerosis due to their potential to induce remyelination. Potent, selective antagonists are required to enable target validation. In the present study, we describe the discovery of a novel class of GPR17 antagonists based on an anthranilic acid scaffold. The compounds' potencies were evaluated in calcium mobilization and radioligand binding assays, and structure-activity relationships were analyzed. Selected antagonists were additionally studied in cAMP and G protein activation assays. The most potent antagonists were 5-methoxy-2-(5-(3'-methoxy-[1,1'-biphenyl]-2-yl)furan-2-carboxamido)benzoic acid (52, PSB-22269, Ki 8.91 nM) and its 3'-trifluoromethyl analog (54, PSB-24040, Ki 83.2 nM). Receptor-ligand docking studies revealed that the compounds' binding site is characterized by positively charged arginine residues and a lipophilic pocket. These findings yield valuable insights into this poorly characterized receptor providing a basis for future drug development.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.