Ayesha Ahmed Chaudhri, Yuya Kakumu, Sirinthra Thiengmag, Jack Chun-Ting Liu, Geng-Min Lin, Suhan Durusu, Friederike Biermann, Miriam Boeck, Christopher A Voigt, Jon Clardy, Reiko Ueoka, Allison S Walker, Eric J N Helfrich
{"title":"Functional Redundancy and Dual Function of a Hypothetical Protein in the Biosynthesis of Eunicellane-Type Diterpenoids.","authors":"Ayesha Ahmed Chaudhri, Yuya Kakumu, Sirinthra Thiengmag, Jack Chun-Ting Liu, Geng-Min Lin, Suhan Durusu, Friederike Biermann, Miriam Boeck, Christopher A Voigt, Jon Clardy, Reiko Ueoka, Allison S Walker, Eric J N Helfrich","doi":"10.1021/acschembio.4c00413","DOIUrl":null,"url":null,"abstract":"<p><p>Many complex terpenoids, predominantly isolated from plants and fungi, show drug-like physicochemical properties. Recent advances in genome mining revealed actinobacteria as an almost untouched treasure trove of terpene biosynthetic gene clusters (BGCs). In this study, we characterized a terpene BGC with an unusual architecture. The selected BGC includes, among others, genes encoding a terpene cyclase fused to a truncated reductase domain and a cytochrome P450 monooxygenase (P450) that is split over three gene fragments. Functional characterization of the BGC in a heterologous host led to the identification of several new members of the <i>trans</i>-eunicellane family of diterpenoids, the euthailols, that feature unique oxidation patterns. A combination of bioinformatic analyses, structural modeling studies, and heterologous expression revealed a dual function of the pathway-encoded hypothetical protein that acts as an isomerase and an oxygenase. Moreover, in the absence of other tailoring enzymes, a P450 hydroxylates the eunicellane scaffold at a position that is not modified in other eunicellanes. Surprisingly, both the modifications installed by the hypothetical protein and one of the P450s exhibit partial redundancy. Bioactivity assays revealed that some of the euthailols show growth inhibitory properties against Gram-negative ESKAPE pathogens. The characterization of the euthailol BGC in this study provides unprecedented insights into the partial functional redundancy of tailoring enzymes in complex diterpenoid biosynthesis and highlights hypothetical proteins as an important and largely overlooked family of tailoring enzymes involved in the maturation of complex terpenoids.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2314-2322"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00413","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many complex terpenoids, predominantly isolated from plants and fungi, show drug-like physicochemical properties. Recent advances in genome mining revealed actinobacteria as an almost untouched treasure trove of terpene biosynthetic gene clusters (BGCs). In this study, we characterized a terpene BGC with an unusual architecture. The selected BGC includes, among others, genes encoding a terpene cyclase fused to a truncated reductase domain and a cytochrome P450 monooxygenase (P450) that is split over three gene fragments. Functional characterization of the BGC in a heterologous host led to the identification of several new members of the trans-eunicellane family of diterpenoids, the euthailols, that feature unique oxidation patterns. A combination of bioinformatic analyses, structural modeling studies, and heterologous expression revealed a dual function of the pathway-encoded hypothetical protein that acts as an isomerase and an oxygenase. Moreover, in the absence of other tailoring enzymes, a P450 hydroxylates the eunicellane scaffold at a position that is not modified in other eunicellanes. Surprisingly, both the modifications installed by the hypothetical protein and one of the P450s exhibit partial redundancy. Bioactivity assays revealed that some of the euthailols show growth inhibitory properties against Gram-negative ESKAPE pathogens. The characterization of the euthailol BGC in this study provides unprecedented insights into the partial functional redundancy of tailoring enzymes in complex diterpenoid biosynthesis and highlights hypothetical proteins as an important and largely overlooked family of tailoring enzymes involved in the maturation of complex terpenoids.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.