Respective Roles of Electron-Phonon and Electron-Electron Interactions in the Transport and Quasiparticle Properties ofSrVO3

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
David J. Abramovitch, Jernej Mravlje, Jin-Jian Zhou, Antoine Georges, Marco Bernardi
{"title":"Respective Roles of Electron-Phonon and Electron-Electron Interactions in the Transport and Quasiparticle Properties ofSrVO3","authors":"David J. Abramovitch, Jernej Mravlje, Jin-Jian Zhou, Antoine Georges, Marco Bernardi","doi":"10.1103/physrevlett.133.186501","DOIUrl":null,"url":null,"abstract":"The spectral and transport properties of strongly correlated metals, such as <mjx-container ctxtmenu_counter=\"39\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper S r upper V upper O 3\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">r</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">V</mjx-c><mjx-c style=\"padding-top: 0.669em;\">O</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> (SVO), are widely attributed to electron-electron (<mjx-container ctxtmenu_counter=\"40\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"e minus e\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container>) interactions, with lattice vibrations (phonons) playing a secondary role. Here, using first-principles electron-phonon (<mjx-container ctxtmenu_counter=\"41\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"e\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi></mjx-math></mjx-container>-ph) and dynamical mean field theory calculations, we show that <mjx-container ctxtmenu_counter=\"42\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"e\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi></mjx-math></mjx-container>-ph interactions play an essential role in SVO: they govern the electron scattering and resistivity in a wide temperature range down to 30 K, and induce an experimentally observed kink in the spectral function. In contrast, the <mjx-container ctxtmenu_counter=\"43\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"e minus e\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> interactions control quasiparticle renormalization and low temperature transport, and enhance the <mjx-container ctxtmenu_counter=\"44\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"e\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi></mjx-math></mjx-container>-ph coupling. We clarify the origin of the near <mjx-container ctxtmenu_counter=\"45\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper T squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em; margin-left: 0.052em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> temperature dependence of the resistivity by analyzing the <mjx-container ctxtmenu_counter=\"46\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"e minus e\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\"47\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"e\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi></mjx-math></mjx-container>-ph limited transport regimes. Our work disentangles the electronic and lattice degrees of freedom in a prototypical correlated metal, revealing the dominant role of <mjx-container ctxtmenu_counter=\"48\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"e\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi></mjx-math></mjx-container>-ph interactions in SVO.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"27 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.186501","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The spectral and transport properties of strongly correlated metals, such as SrVO3 (SVO), are widely attributed to electron-electron (𝑒𝑒) interactions, with lattice vibrations (phonons) playing a secondary role. Here, using first-principles electron-phonon (𝑒-ph) and dynamical mean field theory calculations, we show that 𝑒-ph interactions play an essential role in SVO: they govern the electron scattering and resistivity in a wide temperature range down to 30 K, and induce an experimentally observed kink in the spectral function. In contrast, the 𝑒𝑒 interactions control quasiparticle renormalization and low temperature transport, and enhance the 𝑒-ph coupling. We clarify the origin of the near 𝑇2 temperature dependence of the resistivity by analyzing the 𝑒𝑒 and 𝑒-ph limited transport regimes. Our work disentangles the electronic and lattice degrees of freedom in a prototypical correlated metal, revealing the dominant role of 𝑒-ph interactions in SVO.
电子-虹霓和电子-电子相互作用在二氧化硅的传输和准粒子特性中的各自作用
强相关金属(如 SrVO3 (SVO))的光谱和传输特性普遍归因于电子-电子(𝑒-𝑒)相互作用,而晶格振动(声子)起次要作用。在这里,我们利用第一原理电子-声子(𝑒-ph)和动力学均场理论计算,证明了𝑒-ph 相互作用在 SVO 中起着至关重要的作用:它们在低至 30 K 的宽温度范围内控制着电子散射和电阻率,并在光谱函数中诱发了实验观察到的扭结。相反,𝑒-𝑒 相互作用控制着类粒子重正化和低温传输,并增强了𝑒-ph 耦合。我们通过分析𝑒-𝑒 和 𝑒-ph 有限输运体系,阐明了电阻率的近 𝑇2 温度依赖性的起源。我们的研究拆分了原型相关金属中的电子自由度和晶格自由度,揭示了𝑒-ph 相互作用在 SVO 中的主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信