Entangling Four Logical Qubits beyond Break-Even in a Nonlocal Code

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yifan Hong, Elijah Durso-Sabina, David Hayes, Andrew Lucas
{"title":"Entangling Four Logical Qubits beyond Break-Even in a Nonlocal Code","authors":"Yifan Hong, Elijah Durso-Sabina, David Hayes, Andrew Lucas","doi":"10.1103/physrevlett.133.180601","DOIUrl":null,"url":null,"abstract":"Quantum error correction protects logical quantum information against environmental decoherence by encoding logical qubits into entangled states of physical qubits. One of the most important near-term challenges in building a scalable quantum computer is to reach the break-even point, where logical quantum circuits on error-corrected qubits achieve higher fidelity than equivalent circuits on uncorrected physical qubits. Using Quantinuum’s H2 trapped-ion quantum processor, we encode the Greenberger–Horne–Zeilinger (GHZ) state in four logical qubits with fidelity <mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(15 (11 0 1 2) 3 (14 12 4 5 6 (13 7 8 9)) 10)\"><mjx-mrow data-semantic-children=\"11,3,14,10\" data-semantic-content=\"3,10\" data-semantic- data-semantic-owns=\"11 3 14 10\" data-semantic-role=\"sequence\" data-semantic-speech=\"99.5 plus or minus 0.15 percent sign less than or equals upper F less than or equals 99.7 plus or minus 0.1 percent sign\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"15\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c style=\"padding-top: 0.646em;\">5</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"11\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">5</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c>%</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"12,5,13\" data-semantic-content=\"4,6\" data-semantic- data-semantic-owns=\"12 4 5 6 13\" data-semantic-parent=\"15\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≤</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝐹</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≤</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,9\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 9\" data-semantic-parent=\"14\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c style=\"padding-top: 0.646em;\">7</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"13\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">.</mjx-c><mjx-c style=\"padding-top: 0.642em;\">1</mjx-c></mjx-mn></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c>%</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> (after postselecting on over 98% of outcomes). Using the same quantum processor, we can prepare an uncorrected GHZ state on four physical qubits with fidelity <mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(15 (11 0 1 2) 3 (14 12 4 5 6 (13 7 8 9)) 10)\"><mjx-mrow data-semantic-children=\"11,3,14,10\" data-semantic-content=\"3,10\" data-semantic- data-semantic-owns=\"11 3 14 10\" data-semantic-role=\"sequence\" data-semantic-speech=\"97.8 plus or minus 0.2 percent sign less than or equals upper F less than or equals 98.7 plus or minus 0.2 percent sign\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"15\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">7</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">.</mjx-c><mjx-c style=\"padding-top: 0.647em;\">8</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"11\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">.</mjx-c><mjx-c style=\"padding-top: 0.644em;\">2</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c>%</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"12,5,13\" data-semantic-content=\"4,6\" data-semantic- data-semantic-owns=\"12 4 5 6 13\" data-semantic-parent=\"15\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≤</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝐹</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≤</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,9\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 9\" data-semantic-parent=\"14\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">.</mjx-c><mjx-c style=\"padding-top: 0.647em;\">7</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"13\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">.</mjx-c><mjx-c style=\"padding-top: 0.644em;\">2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c>%</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container>. The logical qubits are encoded in a <mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(8 0 (7 1 2 3 4 5) 6)\"><mjx-mrow data-semantic-children=\"7\" data-semantic-content=\"0,6\" data-semantic- data-semantic-owns=\"0 7 6\" data-semantic-role=\"leftright\" data-semantic-speech=\"left white bracket 25 comma 4 comma 3 right white bracket\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.023em;\"><mjx-c>⟦</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"1,2,3,4,5\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"1 2 3 4 5\" data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">2</mjx-c><mjx-c style=\"padding-top: 0.644em;\">5</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"2\"><mjx-c>4</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"2\"><mjx-c>3</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.023em;\"><mjx-c>⟧</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> Tanner-transformed long-range-enhanced surface code. Logical entangling gates are implemented using simple swap operations. Our results are a first step toward realizing fault-tolerant quantum computation with logical qubits encoded in geometrically nonlocal quantum low-density parity check codes.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"126 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.180601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum error correction protects logical quantum information against environmental decoherence by encoding logical qubits into entangled states of physical qubits. One of the most important near-term challenges in building a scalable quantum computer is to reach the break-even point, where logical quantum circuits on error-corrected qubits achieve higher fidelity than equivalent circuits on uncorrected physical qubits. Using Quantinuum’s H2 trapped-ion quantum processor, we encode the Greenberger–Horne–Zeilinger (GHZ) state in four logical qubits with fidelity 99.5±0.15%𝐹99.7±0.1% (after postselecting on over 98% of outcomes). Using the same quantum processor, we can prepare an uncorrected GHZ state on four physical qubits with fidelity 97.8±0.2%𝐹98.7±0.2%. The logical qubits are encoded in a 25,4,3 Tanner-transformed long-range-enhanced surface code. Logical entangling gates are implemented using simple swap operations. Our results are a first step toward realizing fault-tolerant quantum computation with logical qubits encoded in geometrically nonlocal quantum low-density parity check codes.
在非局部代码中纠缠四个超越盈亏平衡的逻辑丘比特
量子纠错通过将逻辑量子比特编码为物理量子比特的纠缠态,保护逻辑量子信息免受环境退相干的影响。构建可扩展量子计算机的近期最重要挑战之一是达到收支平衡点,即纠错量子比特上的逻辑量子电路比未纠错物理量子比特上的等效电路具有更高的保真度。利用 Quantinuum 的 H2 捕获离子量子处理器,我们在四个逻辑量子比特中编码了格林伯格-霍恩-蔡林格(GHZ)态,保真度为 99.5±0.15%≤𝐹≤99.7±0.1% (在对超过 98% 的结果进行后选择后)。使用相同的量子处理器,我们可以在四个物理量子比特上制备未校正的 GHZ 状态,保真度为 97.8±0.2%≤ᵃ≤98.7±0.2%。逻辑量子比特采用⟦25,4,3⟧坦纳变换长程增强表面码编码。逻辑纠缠门是通过简单的交换操作实现的。我们的成果是利用几何非局部量子低密度奇偶校验码编码的逻辑量子比特实现容错量子计算的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信