Yifan Hong, Elijah Durso-Sabina, David Hayes, Andrew Lucas
{"title":"Entangling Four Logical Qubits beyond Break-Even in a Nonlocal Code","authors":"Yifan Hong, Elijah Durso-Sabina, David Hayes, Andrew Lucas","doi":"10.1103/physrevlett.133.180601","DOIUrl":null,"url":null,"abstract":"Quantum error correction protects logical quantum information against environmental decoherence by encoding logical qubits into entangled states of physical qubits. One of the most important near-term challenges in building a scalable quantum computer is to reach the break-even point, where logical quantum circuits on error-corrected qubits achieve higher fidelity than equivalent circuits on uncorrected physical qubits. Using Quantinuum’s H2 trapped-ion quantum processor, we encode the Greenberger–Horne–Zeilinger (GHZ) state in four logical qubits with fidelity <mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(15 (11 0 1 2) 3 (14 12 4 5 6 (13 7 8 9)) 10)\"><mjx-mrow data-semantic-children=\"11,3,14,10\" data-semantic-content=\"3,10\" data-semantic- data-semantic-owns=\"11 3 14 10\" data-semantic-role=\"sequence\" data-semantic-speech=\"99.5 plus or minus 0.15 percent sign less than or equals upper F less than or equals 99.7 plus or minus 0.1 percent sign\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"15\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c style=\"padding-top: 0.646em;\">5</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"11\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">5</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c>%</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"12,5,13\" data-semantic-content=\"4,6\" data-semantic- data-semantic-owns=\"12 4 5 6 13\" data-semantic-parent=\"15\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≤</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝐹</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≤</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,9\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 9\" data-semantic-parent=\"14\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c style=\"padding-top: 0.646em;\">7</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"13\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">.</mjx-c><mjx-c style=\"padding-top: 0.642em;\">1</mjx-c></mjx-mn></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c>%</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> (after postselecting on over 98% of outcomes). Using the same quantum processor, we can prepare an uncorrected GHZ state on four physical qubits with fidelity <mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(15 (11 0 1 2) 3 (14 12 4 5 6 (13 7 8 9)) 10)\"><mjx-mrow data-semantic-children=\"11,3,14,10\" data-semantic-content=\"3,10\" data-semantic- data-semantic-owns=\"11 3 14 10\" data-semantic-role=\"sequence\" data-semantic-speech=\"97.8 plus or minus 0.2 percent sign less than or equals upper F less than or equals 98.7 plus or minus 0.2 percent sign\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"15\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">7</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">.</mjx-c><mjx-c style=\"padding-top: 0.647em;\">8</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"11\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">.</mjx-c><mjx-c style=\"padding-top: 0.644em;\">2</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c>%</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"12,5,13\" data-semantic-content=\"4,6\" data-semantic- data-semantic-owns=\"12 4 5 6 13\" data-semantic-parent=\"15\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≤</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝐹</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"14\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≤</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,9\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 9\" data-semantic-parent=\"14\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">.</mjx-c><mjx-c style=\"padding-top: 0.647em;\">7</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"13\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">.</mjx-c><mjx-c style=\"padding-top: 0.644em;\">2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c>%</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container>. The logical qubits are encoded in a <mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(8 0 (7 1 2 3 4 5) 6)\"><mjx-mrow data-semantic-children=\"7\" data-semantic-content=\"0,6\" data-semantic- data-semantic-owns=\"0 7 6\" data-semantic-role=\"leftright\" data-semantic-speech=\"left white bracket 25 comma 4 comma 3 right white bracket\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.023em;\"><mjx-c>⟦</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"1,2,3,4,5\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"1 2 3 4 5\" data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">2</mjx-c><mjx-c style=\"padding-top: 0.644em;\">5</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"2\"><mjx-c>4</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"2\"><mjx-c>3</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.023em;\"><mjx-c>⟧</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> Tanner-transformed long-range-enhanced surface code. Logical entangling gates are implemented using simple swap operations. Our results are a first step toward realizing fault-tolerant quantum computation with logical qubits encoded in geometrically nonlocal quantum low-density parity check codes.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"126 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.180601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum error correction protects logical quantum information against environmental decoherence by encoding logical qubits into entangled states of physical qubits. One of the most important near-term challenges in building a scalable quantum computer is to reach the break-even point, where logical quantum circuits on error-corrected qubits achieve higher fidelity than equivalent circuits on uncorrected physical qubits. Using Quantinuum’s H2 trapped-ion quantum processor, we encode the Greenberger–Horne–Zeilinger (GHZ) state in four logical qubits with fidelity 99.5±0.15%≤𝐹≤99.7±0.1% (after postselecting on over 98% of outcomes). Using the same quantum processor, we can prepare an uncorrected GHZ state on four physical qubits with fidelity 97.8±0.2%≤𝐹≤98.7±0.2%. The logical qubits are encoded in a ⟦25,4,3⟧ Tanner-transformed long-range-enhanced surface code. Logical entangling gates are implemented using simple swap operations. Our results are a first step toward realizing fault-tolerant quantum computation with logical qubits encoded in geometrically nonlocal quantum low-density parity check codes.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks