Trace element and isotope composition of calcite, apatite, and zircon associated with magmatic sulfide globules

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Maria Cherdantseva, Marco L. Fiorentini, Christopher M. Fisher, Antony I. S. Kemp, Laure A. J. Martin, Matvei Aleshin, Malcolm P. Roberts
{"title":"Trace element and isotope composition of calcite, apatite, and zircon associated with magmatic sulfide globules","authors":"Maria Cherdantseva, Marco L. Fiorentini, Christopher M. Fisher, Antony I. S. Kemp, Laure A. J. Martin, Matvei Aleshin, Malcolm P. Roberts","doi":"10.1007/s00126-024-01318-8","DOIUrl":null,"url":null,"abstract":"<p>The formation of volatile-rich phases in magmatic sulfide systems has been interpreted at least in six different ways. The most popular model attributes their origin to secondary processes, mostly due to the presence of serpentine, chlorite, phlogopite, amphibole, and calcite. While chlorite and serpentine are likely to form as alteration products, the other volatile-rich minerals have the potential to originate in a range of ways, including by primary magmatic processes. Based on mineralogical and petrological studies, it was recently suggested that volatile- and incompatible element-rich halos around sulfide globules may form due to the interaction between three immiscible liquids: silicate, carbonate, and sulfide. This hypothesis was confirmed by experimental data revealing the systematic envelopment of sulfide globules by carbonate melt, indicating their mutual affinity. In this study, we present data on isotopic signatures and trace element distributions of three minerals commonly found in spatial association with sulfides—calcite, apatite, and zircon—to address the question of the source and nature of volatiles and other incompatible elements involved in the formation of the halos. Here we compare our new hypothesis with all the previously proposed explanations to show if they can be consistent with obtained results. Our findings indicate that both mantle and crustal sources play a role in the formation of volatile- and incompatible element-rich halos, strongly correlating with sulfur isotope data previously reported for the sulfide globules in the same intrusions. This correlation confirms the shared origin of sulfides, carbonate and fluids during ore-forming processes, ruling out the secondary origin of volatile-rich phases. The isotope and trace element signatures support the newly proposed hypothesis that volatile- and incompatible element-rich halos could have been formed due to the interaction of immiscible sulfide, carbonate, and silicate melts. The volatile-rich carbonate melt could be sourced from the mantle or it could be added from the crust. Regardless of the origin, carbonate melt and sulfide liquid both immiscible with mafic magma tend to stick to each other resulting in the formation of volatile- and incompatible element-rich halos commonly documented in magmatic sulfide deposits.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"19 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01318-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of volatile-rich phases in magmatic sulfide systems has been interpreted at least in six different ways. The most popular model attributes their origin to secondary processes, mostly due to the presence of serpentine, chlorite, phlogopite, amphibole, and calcite. While chlorite and serpentine are likely to form as alteration products, the other volatile-rich minerals have the potential to originate in a range of ways, including by primary magmatic processes. Based on mineralogical and petrological studies, it was recently suggested that volatile- and incompatible element-rich halos around sulfide globules may form due to the interaction between three immiscible liquids: silicate, carbonate, and sulfide. This hypothesis was confirmed by experimental data revealing the systematic envelopment of sulfide globules by carbonate melt, indicating their mutual affinity. In this study, we present data on isotopic signatures and trace element distributions of three minerals commonly found in spatial association with sulfides—calcite, apatite, and zircon—to address the question of the source and nature of volatiles and other incompatible elements involved in the formation of the halos. Here we compare our new hypothesis with all the previously proposed explanations to show if they can be consistent with obtained results. Our findings indicate that both mantle and crustal sources play a role in the formation of volatile- and incompatible element-rich halos, strongly correlating with sulfur isotope data previously reported for the sulfide globules in the same intrusions. This correlation confirms the shared origin of sulfides, carbonate and fluids during ore-forming processes, ruling out the secondary origin of volatile-rich phases. The isotope and trace element signatures support the newly proposed hypothesis that volatile- and incompatible element-rich halos could have been formed due to the interaction of immiscible sulfide, carbonate, and silicate melts. The volatile-rich carbonate melt could be sourced from the mantle or it could be added from the crust. Regardless of the origin, carbonate melt and sulfide liquid both immiscible with mafic magma tend to stick to each other resulting in the formation of volatile- and incompatible element-rich halos commonly documented in magmatic sulfide deposits.

Abstract Image

与岩浆硫化物球有关的方解石、磷灰石和锆石的微量元素和同位素组成
岩浆硫化物系统中富挥发性相的形成至少有六种不同的解释。最流行的模式是将它们的形成归因于次生过程,这主要是由于蛇纹石、绿泥石、辉绿岩、闪石和方解石的存在。绿泥石和蛇纹石很可能是作为蚀变产物形成的,而其他富含挥发性的矿物则有可能以各种方式形成,包括原生岩浆过程。根据矿物学和岩石学研究,最近有人提出,硫化物球周围富含挥发性和不相容元素的晕轮可能是由于硅酸盐、碳酸盐和硫化物这三种不相溶液体之间的相互作用而形成的。实验数据证实了这一假设,这些数据揭示了硫化物球被碳酸盐熔体系统性地包裹,表明了它们之间的相互亲和性。在本研究中,我们展示了三种常见的与硫化物存在空间关联的矿物--方解石、磷灰石和锆石--的同位素特征和微量元素分布数据,以解决参与形成光环的挥发物和其他不相容元素的来源和性质问题。在此,我们将我们的新假说与之前提出的所有解释进行比较,以说明它们是否与所获得的结果一致。我们的研究结果表明,地幔和地壳来源在富含挥发物和不相容元素的晕的形成过程中都发挥了作用,这与之前报道的同一侵入体中硫化物球的硫同位素数据密切相关。这种相关性证实了硫化物、碳酸盐和流体在成矿过程中的共同起源,排除了富挥发性相的次生起源。同位素和痕量元素特征支持新提出的假设,即富含挥发性和不相容元素的光环可能是由于不相溶的硫化物、碳酸盐和硅酸盐熔体相互作用而形成的。富含挥发性的碳酸盐熔体可能来自地幔,也可能来自地壳。无论来源如何,与岩浆互不相溶的碳酸盐熔体和硫化物液体往往会相互粘连,从而形成岩浆硫化物矿床中常见的富含挥发性和不相容元素的晕轮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信