Alice Dini, Harlan Barker, Emilia Piki, Subodh Sharma, Juuli Raivola, Astrid Murumägi, Daniela Ungureanu
{"title":"A multiplex single-cell RNA-Seq pharmacotranscriptomics pipeline for drug discovery","authors":"Alice Dini, Harlan Barker, Emilia Piki, Subodh Sharma, Juuli Raivola, Astrid Murumägi, Daniela Ungureanu","doi":"10.1038/s41589-024-01761-8","DOIUrl":null,"url":null,"abstract":"<p>The gene-regulatory dynamics governing drug responses in cancer are yet to be fully understood. Here, we report a pipeline capable of producing high-throughput pharmacotranscriptomic profiling through live-cell barcoding using antibody–oligonucleotide conjugates. This pipeline combines drug screening with 96-plex single-cell RNA sequencing. We show the potential of this approach by exploring the heterogeneous transcriptional landscape of primary high-grade serous ovarian cancer (HGSOC) cells after treatment with 45 drugs, with 13 distinct classes of mechanisms of action. A subset of phosphatidylinositol 3-OH kinase (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR) inhibitors induced the activation of receptor tyrosine kinases, such as the epithelial growth factor receptor (EGFR), and this was mediated by the upregulation of caveolin 1 (CAV1). This drug resistance feedback loop could be mitigated by the synergistic action of agents targeting PI3K–AKT–mTOR and EGFR for HGSOC with CAV1 and EGFR expression. Using this workflow could enable the personalized testing of patient-derived tumor samples at single-cell resolution.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"37 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01761-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The gene-regulatory dynamics governing drug responses in cancer are yet to be fully understood. Here, we report a pipeline capable of producing high-throughput pharmacotranscriptomic profiling through live-cell barcoding using antibody–oligonucleotide conjugates. This pipeline combines drug screening with 96-plex single-cell RNA sequencing. We show the potential of this approach by exploring the heterogeneous transcriptional landscape of primary high-grade serous ovarian cancer (HGSOC) cells after treatment with 45 drugs, with 13 distinct classes of mechanisms of action. A subset of phosphatidylinositol 3-OH kinase (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR) inhibitors induced the activation of receptor tyrosine kinases, such as the epithelial growth factor receptor (EGFR), and this was mediated by the upregulation of caveolin 1 (CAV1). This drug resistance feedback loop could be mitigated by the synergistic action of agents targeting PI3K–AKT–mTOR and EGFR for HGSOC with CAV1 and EGFR expression. Using this workflow could enable the personalized testing of patient-derived tumor samples at single-cell resolution.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.