{"title":"H3K27 dimethylation dynamics reveal stepwise establishment of facultative heterochromatin in early mouse embryos","authors":"Masahiro Matsuwaka, Mami Kumon, Azusa Inoue","doi":"10.1038/s41556-024-01553-1","DOIUrl":null,"url":null,"abstract":"<p>Facultative heterochromatin is formed by Polycomb repressive complex 2 (PRC2)-deposited H3K27 trimethylation (H3K27me3) and PRC1-deposited H2AK119 mono-ubiquitylation (H2AK119ub1). How it is newly established after fertilization remains unclear. To delineate the establishment kinetics, here we profiled the temporal dynamics of H3K27 dimethylation (H3K27me2), which represents the de novo PRC2 catalysis, in mouse preimplantation embryos. H3K27me2 is newly deposited at CpG islands (CGIs), the paternal X chromosome (Xp) and putative enhancers during the eight-cell-to-morula transition, all of which follow H2AK119ub1 deposition. We found that JARID2, a PRC2.2-specific accessory protein possessing an H2AK119ub1-binding ability, colocalizes with SUZ12 at CGIs and Xp in morula embryos. Upon JARID2 depletion, SUZ12 chromatin binding and H3K27me2 deposition were attenuated and H3K27 acetylation at putative enhancers was increased in morulae and subsequently H3K27me3 failed to be deposited in blastocysts. These data reveal that facultative heterochromatin is established by PRC2.2-driven stepwise H3K27 methylation along pre-deposited H2AK119ub1 during early embryogenesis.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"42 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-024-01553-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Facultative heterochromatin is formed by Polycomb repressive complex 2 (PRC2)-deposited H3K27 trimethylation (H3K27me3) and PRC1-deposited H2AK119 mono-ubiquitylation (H2AK119ub1). How it is newly established after fertilization remains unclear. To delineate the establishment kinetics, here we profiled the temporal dynamics of H3K27 dimethylation (H3K27me2), which represents the de novo PRC2 catalysis, in mouse preimplantation embryos. H3K27me2 is newly deposited at CpG islands (CGIs), the paternal X chromosome (Xp) and putative enhancers during the eight-cell-to-morula transition, all of which follow H2AK119ub1 deposition. We found that JARID2, a PRC2.2-specific accessory protein possessing an H2AK119ub1-binding ability, colocalizes with SUZ12 at CGIs and Xp in morula embryos. Upon JARID2 depletion, SUZ12 chromatin binding and H3K27me2 deposition were attenuated and H3K27 acetylation at putative enhancers was increased in morulae and subsequently H3K27me3 failed to be deposited in blastocysts. These data reveal that facultative heterochromatin is established by PRC2.2-driven stepwise H3K27 methylation along pre-deposited H2AK119ub1 during early embryogenesis.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology