The mitochondrial citrate carrier SLC25A1 regulates metabolic reprogramming and morphogenesis in the developing heart

IF 5.2 1区 生物学 Q1 BIOLOGY
Chiemela Ohanele, Jessica N. Peoples, Anja Karlstaedt, Joshua T. Geiger, Ashley D. Gayle, Nasab Ghazal, Fateemaa Sohani, Milton E. Brown, Michael E. Davis, George A. Porter Jr., Victor Faundez, Jennifer Q. Kwong
{"title":"The mitochondrial citrate carrier SLC25A1 regulates metabolic reprogramming and morphogenesis in the developing heart","authors":"Chiemela Ohanele, Jessica N. Peoples, Anja Karlstaedt, Joshua T. Geiger, Ashley D. Gayle, Nasab Ghazal, Fateemaa Sohani, Milton E. Brown, Michael E. Davis, George A. Porter Jr., Victor Faundez, Jennifer Q. Kwong","doi":"10.1038/s42003-024-07110-8","DOIUrl":null,"url":null,"abstract":"The developing mammalian heart undergoes an important metabolic shift from glycolysis towards mitochondrial oxidation that is critical to support the increasing energetic demands of the maturing heart. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mitochondrial citrate carrier (SLC25A1) knockout mice. Slc25a1 null embryos displayed impaired growth, mitochondrial dysfunction and cardiac malformations that recapitulate the congenital heart defects observed in 22q11.2 deletion syndrome, a microdeletion disorder involving the SLC25A1 locus. Importantly, Slc25a1 heterozygous embryos, while overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of cardiac morphogenesis and metabolic maturation, and suggests a role in congenital heart disease. The mitochondrial citrate carrier SLC25A1 mediates key metabolic transitions during cardiac morphogenesis through epigenetic regulation of histone acetylation, ultimately supporting structural maturation of the embryonic heart.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42003-024-07110-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07110-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The developing mammalian heart undergoes an important metabolic shift from glycolysis towards mitochondrial oxidation that is critical to support the increasing energetic demands of the maturing heart. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mitochondrial citrate carrier (SLC25A1) knockout mice. Slc25a1 null embryos displayed impaired growth, mitochondrial dysfunction and cardiac malformations that recapitulate the congenital heart defects observed in 22q11.2 deletion syndrome, a microdeletion disorder involving the SLC25A1 locus. Importantly, Slc25a1 heterozygous embryos, while overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of cardiac morphogenesis and metabolic maturation, and suggests a role in congenital heart disease. The mitochondrial citrate carrier SLC25A1 mediates key metabolic transitions during cardiac morphogenesis through epigenetic regulation of histone acetylation, ultimately supporting structural maturation of the embryonic heart.

Abstract Image

线粒体柠檬酸载体 SLC25A1 调控发育中心脏的代谢重编程和形态发生
发育中的哺乳动物心脏经历了从糖酵解到线粒体氧化的重要代谢转变,这对支持成熟心脏日益增长的能量需求至关重要。在这里,我们通过研究线粒体柠檬酸载体(SLC25A1)基因敲除小鼠,揭示了线粒体与心脏形态发生之间新的机制联系。Slc25a1 基因缺失的胚胎表现出生长受阻、线粒体功能障碍和心脏畸形,再现了在 22q11.2 缺失综合征(一种涉及 SLC25A1 基因座的微缺失疾病)中观察到的先天性心脏缺陷。重要的是,Slc25a1 杂合子胚胎虽然与野生型没有明显区别,但出现这些缺陷的频率却增加了,这表明 Slc25a1 具有单倍性和剂量依赖效应。从机制上讲,SLC25A1 可能通过基因表达的表观遗传控制将线粒体与代谢的转录调控联系起来,从而促进发育中心脏的代谢重塑。总之,这项研究将 SLC25A1 定义为心脏形态发生和代谢成熟的新型线粒体调控因子,并提示其在先天性心脏病中的作用。线粒体柠檬酸盐载体 SLC25A1 通过对组蛋白乙酰化的表观遗传调控,介导了心脏形态发生过程中的关键代谢转变,最终支持了胚胎心脏的结构成熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信