{"title":"Current-Limiting Strategy for Unbalanced Low-Voltage Ride Through of the SMSI-MG Based on Coordinated Control of the Generator Subunits","authors":"Jinjing Zhang, Xinggui Wang, Sheng Xue","doi":"10.1155/2024/4613473","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Unlike the inverters in the traditional alternating-current (AC) microgrid, those in a microgrid with series microsource inverters (SMSI-MG) are connected to the power grid after being cascaded. The authors of this study first divide the control sections according to the degree of grid voltage dips and formulate a coordinated scheme to suppress fluctuations in the output powers of the SMSI-MG. For the section in which the degree of unbalanced grid voltage dips is relatively low, a current-limiting strategy that reduces the output power of the SMSI-MG through the coordinated control of the generator subunits (CCGU) is proposed. More active power can be provided by the SMSI-MG when the proposed strategy is used, than in the strategy that is based on changing the reference power, and the output reactive power of the SMSI-MG can be automatically changed with the degrees of dip and unbalance of the grid voltage. The Light Gradient-Boosting Machine (LightGBM) is used to establish a mapping relationship between the parameters characterizing overcurrent and the reduction quantity in output active power of the SMSI-MG to implement the CCGU-based current-limiting strategy. The complex collaborative control is simplified to improve the low-voltage ride through (LVRT) capability of the SMSI-MG.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4613473","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4613473","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Unlike the inverters in the traditional alternating-current (AC) microgrid, those in a microgrid with series microsource inverters (SMSI-MG) are connected to the power grid after being cascaded. The authors of this study first divide the control sections according to the degree of grid voltage dips and formulate a coordinated scheme to suppress fluctuations in the output powers of the SMSI-MG. For the section in which the degree of unbalanced grid voltage dips is relatively low, a current-limiting strategy that reduces the output power of the SMSI-MG through the coordinated control of the generator subunits (CCGU) is proposed. More active power can be provided by the SMSI-MG when the proposed strategy is used, than in the strategy that is based on changing the reference power, and the output reactive power of the SMSI-MG can be automatically changed with the degrees of dip and unbalance of the grid voltage. The Light Gradient-Boosting Machine (LightGBM) is used to establish a mapping relationship between the parameters characterizing overcurrent and the reduction quantity in output active power of the SMSI-MG to implement the CCGU-based current-limiting strategy. The complex collaborative control is simplified to improve the low-voltage ride through (LVRT) capability of the SMSI-MG.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.