{"title":"A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems","authors":"Xinyu Tian","doi":"10.1155/2024/9343734","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time-frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9343734","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9343734","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time-frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.