A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xinyu Tian
{"title":"A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems","authors":"Xinyu Tian","doi":"10.1155/2024/9343734","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time-frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9343734","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9343734","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time-frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.

Abstract Image

智能无线通信系统中的深度卷积自动编码器信道估计方法
通过对无线传输信道特性的建模,信道估计可以改进信号检测和解调技术,提高频谱利用率,优化通信性能,提高智能无线通信系统的质量、可靠性和效率。本文提出了一种基于深度卷积自动编码器的智能无线通信系统信道估计方法。首先,发射机和接收机之间的信道时频响应矩阵可表示为二维图像。然后将它们输入卷积自动编码器,学习关键信道特征。为了降低深度学习模型的结构复杂度,提高推理效率,我们采用了去除冗余参数的方法来实现模型压缩。基于随机梯度下降(SGD)和权重重要性评估的迭代训练和剪枝交替进行,从而获得用于信道估计的轻量级深度学习模型。最后,大量的仿真结果验证了所提方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信