MAML-Enhanced LSTM for Air Quality Time Series Forecasting

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Baron Sam B, Isaac Sajan R, Chithra R. S, Manju C. Thayammal
{"title":"MAML-Enhanced LSTM for Air Quality Time Series Forecasting","authors":"Baron Sam B,&nbsp;Isaac Sajan R,&nbsp;Chithra R. S,&nbsp;Manju C. Thayammal","doi":"10.1007/s11270-024-07549-9","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting air quality is essential for environmental monitoring and public health. In this work, we suggest a novel method for time series forecasting that uses Long Short-Term Memory (LSTM) networks and the Model-Agnostic Meta-Learning (MAML) algorithm to explicitly target air quality factors. The dataset employed includes features such as carbon monoxide concentration, sensor responses, and meteorological variables. Through extensive experimentation, our MAML-enhanced LSTM model demonstrates improved adaptability to new air quality forecasting tasks, particularly when data is limited. We present comprehensive results, including comparisons with traditional LSTM models, highlighting the efficacy of the proposed approach. This research contributes to the advancement of meta-learning techniques in the domain of environmental monitoring and offers insights into the potential of MAML for enhancing time series forecasting models.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07549-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting air quality is essential for environmental monitoring and public health. In this work, we suggest a novel method for time series forecasting that uses Long Short-Term Memory (LSTM) networks and the Model-Agnostic Meta-Learning (MAML) algorithm to explicitly target air quality factors. The dataset employed includes features such as carbon monoxide concentration, sensor responses, and meteorological variables. Through extensive experimentation, our MAML-enhanced LSTM model demonstrates improved adaptability to new air quality forecasting tasks, particularly when data is limited. We present comprehensive results, including comparisons with traditional LSTM models, highlighting the efficacy of the proposed approach. This research contributes to the advancement of meta-learning techniques in the domain of environmental monitoring and offers insights into the potential of MAML for enhancing time series forecasting models.

Abstract Image

用于空气质量时间序列预测的 MAML 增强型 LSTM
预测空气质量对环境监测和公众健康至关重要。在这项工作中,我们提出了一种新的时间序列预测方法,该方法使用长短期记忆(LSTM)网络和模型诊断元学习(MAML)算法,明确针对空气质量因素进行预测。采用的数据集包括一氧化碳浓度、传感器响应和气象变量等特征。通过大量实验,我们的 MAML 增强型 LSTM 模型展示了对新空气质量预测任务的更强适应性,尤其是在数据有限的情况下。我们展示了全面的结果,包括与传统 LSTM 模型的比较,突出了所提方法的功效。这项研究为元学习技术在环境监测领域的发展做出了贡献,并为 MAML 在增强时间序列预测模型方面的潜力提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信