Low-Complexity Attention-Based Unsupervised Anomalous Sound Detection Exploiting Separable Convolutions and Angular Loss

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Michael Neri;Marco Carli
{"title":"Low-Complexity Attention-Based Unsupervised Anomalous Sound Detection Exploiting Separable Convolutions and Angular Loss","authors":"Michael Neri;Marco Carli","doi":"10.1109/LSENS.2024.3480450","DOIUrl":null,"url":null,"abstract":"In this letter, a novel deep neural network, designed to enhance the efficiency and effectiveness of unsupervised sound anomaly detection, is presented. The proposed model exploits an attention module and separable convolutions to identify salient time–frequency patterns in audio data to discriminate between normal and anomalous sounds with reduced computational complexity. The approach is validated through extensive experiments using the Task 2 dataset of the DCASE 2020 challenge. Results demonstrate superior performance in terms of anomaly detection accuracy while having fewer parameters than state-of-the-art methods.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10716469","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10716469/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, a novel deep neural network, designed to enhance the efficiency and effectiveness of unsupervised sound anomaly detection, is presented. The proposed model exploits an attention module and separable convolutions to identify salient time–frequency patterns in audio data to discriminate between normal and anomalous sounds with reduced computational complexity. The approach is validated through extensive experiments using the Task 2 dataset of the DCASE 2020 challenge. Results demonstrate superior performance in terms of anomaly detection accuracy while having fewer parameters than state-of-the-art methods.
利用可分离卷积和角度损失进行基于注意力的低复杂度无监督异常声音检测
本文介绍了一种新型深度神经网络,旨在提高无监督声音异常检测的效率和效果。该模型利用注意力模块和可分离卷积来识别音频数据中的显著时频模式,从而区分正常声音和异常声音,并降低了计算复杂度。通过使用 DCASE 2020 挑战赛的任务 2 数据集进行大量实验,对该方法进行了验证。结果表明,与最先进的方法相比,该方法的参数更少,但在异常检测准确率方面却表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信