A nonconforming extended virtual element method for Stokes interface problems

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yuxiang Huang , Feng Wang , Jinru Chen
{"title":"A nonconforming extended virtual element method for Stokes interface problems","authors":"Yuxiang Huang ,&nbsp;Feng Wang ,&nbsp;Jinru Chen","doi":"10.1016/j.camwa.2024.10.027","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a nonconforming extended virtual element method, which combines the extended finite element method with the nonconforming virtual element method, for solving Stokes interface problems with the unfitted-interface mesh. By introducing some stabilization terms and penalty terms, as well as some special terms defined on non-cut edges of interface elements in the discrete bilinear form, we prove the discrete inf-sup condition and obtain optimal error estimates. It is shown that all results are not only independent of the mesh size and the viscosity coefficient, but also the interface position. Numerical experiments are performed to verify theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"175 ","pages":"Pages 509-535"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212400470X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a nonconforming extended virtual element method, which combines the extended finite element method with the nonconforming virtual element method, for solving Stokes interface problems with the unfitted-interface mesh. By introducing some stabilization terms and penalty terms, as well as some special terms defined on non-cut edges of interface elements in the discrete bilinear form, we prove the discrete inf-sup condition and obtain optimal error estimates. It is shown that all results are not only independent of the mesh size and the viscosity coefficient, but also the interface position. Numerical experiments are performed to verify theoretical results.
斯托克斯界面问题的不符扩展虚拟元素法
本文提出了一种非拟合扩展虚元法,它将扩展有限元法与非拟合虚元法相结合,用于求解非拟合界面网格的斯托克斯界面问题。通过引入一些稳定项和惩罚项,以及离散双线性形式中定义在界面元素非切边上的一些特殊项,我们证明了离散 inf-sup 条件,并获得了最优误差估计值。结果表明,所有结果不仅与网格大小和粘度系数无关,而且与界面位置无关。我们进行了数值实验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信