Symmetry-preserving discretizations in Lagrangian cell-centered hydrodynamics

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"Symmetry-preserving discretizations in Lagrangian cell-centered hydrodynamics","authors":"","doi":"10.1016/j.compfluid.2024.106462","DOIUrl":null,"url":null,"abstract":"<div><div>This paper discusses constructing discretizations in Lagrangian cell-centered hydrodynamics (CCH) that preserve cylindrical symmetry on unequal-angle-zoned grids in two-dimensional Cartesian geometry. We achieve this by modifying the nodal solver (Corot and Mercier, 2018) and updating the total and internal energy equations. The method is a unique solution to the challenging problem of ensuring symmetry in vectors. A criterion is established for determining whether or not this symmetry correction should be applied. We prove that both nodal and zonal quantities maintain a symmetry distribution. Numerical illustrations using unequal-angle initial zoning are presented to demonstrate the efficiency of the scheme.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024002937","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses constructing discretizations in Lagrangian cell-centered hydrodynamics (CCH) that preserve cylindrical symmetry on unequal-angle-zoned grids in two-dimensional Cartesian geometry. We achieve this by modifying the nodal solver (Corot and Mercier, 2018) and updating the total and internal energy equations. The method is a unique solution to the challenging problem of ensuring symmetry in vectors. A criterion is established for determining whether or not this symmetry correction should be applied. We prove that both nodal and zonal quantities maintain a symmetry distribution. Numerical illustrations using unequal-angle initial zoning are presented to demonstrate the efficiency of the scheme.
拉格朗日细胞中心流体力学中的对称保留离散化
本文讨论了在二维笛卡尔几何的不等角分区网格上构建拉格朗日细胞中心流体力学(CCH)离散化,以保持圆柱对称性。我们通过修改节点求解器(Corot 和 Mercier,2018 年)和更新总能量和内能方程来实现这一目标。该方法是确保矢量对称性这一难题的独特解决方案。我们建立了一个标准,用于确定是否应用这种对称性修正。我们证明了节点量和带状量都保持了对称分布。使用不等角初始分区进行了数值说明,以展示该方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信