Jiaqi Liu, Dafu Cao, Kun Wang, Yanling Zhou, Hanyang Xue
{"title":"Study on seismic performance of prestressed fabricated reinforced concrete frame structure assembled by steel sleeves","authors":"Jiaqi Liu, Dafu Cao, Kun Wang, Yanling Zhou, Hanyang Xue","doi":"10.1016/j.engstruct.2024.119222","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel type of prestressed fabricated reinforced concrete frame (PSFRC frame) structure, which utilizes steel sleeves for assembly. The PSFRC frame incorporates prestressed tendons, stiffened steel sleeves, and high-strength bolts, resulting in improved bearing capacity and assembly efficiency. To assess the seismic performance of the PSFRC frame joint, experimental tests were conducted on one reinforced concrete (RC) joint and two PSFRC frame joints under cyclic loading. Hysteresis analysis and elastic-plastic time-history analysis were also performed using a finite element model. The experimental results showed that the PSFRC edge joint reached a peak load of 89.30 kN, while the PSFRC middle joint exhibited a capacity of 169.95 kN, which was 58.87 % higher than that of the cast-in-place specimen XJ (107.87 kN). The hysteresis curves of the PSFRC joints demonstrated significant fullness, with the equivalent damping coefficient of the PSFRC joint being increased by 11.56 % compared to the RC joint. Additionally, a simulation method using ABAQUS software was proposed to investigate the seismic response of the integral structure of the PSFRC frame. Finite element models for both PSFRC and RC frames were established, and their seismic performance was analyzed under cyclic loading and the El Centro seismic wave. Various parameters including peak loading capacity, stiffness degradation, peak acceleration value, inter-storey drift ratio, and concrete damage value were considered. The finite element analysis results revealed that the load-carrying capacity of the PSFRC frame (435.33 kN) was approximately 30 % higher than that of the RC frame (386.48 kN). Furthermore, at the peak acceleration of 600 gal, the maximum inter-storey drift ratio of the first floor for the PSFRC frame was 1/58, which was below the limit value of 1/50. The plastic hinge position at the beam end of the PSFRC frame was further from the core area, aligning with seismic design objectives. This research provides valuable insights into the design of fabricated building structures and methods for analyzing seismic performance.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"322 ","pages":"Article 119222"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014102962401784X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel type of prestressed fabricated reinforced concrete frame (PSFRC frame) structure, which utilizes steel sleeves for assembly. The PSFRC frame incorporates prestressed tendons, stiffened steel sleeves, and high-strength bolts, resulting in improved bearing capacity and assembly efficiency. To assess the seismic performance of the PSFRC frame joint, experimental tests were conducted on one reinforced concrete (RC) joint and two PSFRC frame joints under cyclic loading. Hysteresis analysis and elastic-plastic time-history analysis were also performed using a finite element model. The experimental results showed that the PSFRC edge joint reached a peak load of 89.30 kN, while the PSFRC middle joint exhibited a capacity of 169.95 kN, which was 58.87 % higher than that of the cast-in-place specimen XJ (107.87 kN). The hysteresis curves of the PSFRC joints demonstrated significant fullness, with the equivalent damping coefficient of the PSFRC joint being increased by 11.56 % compared to the RC joint. Additionally, a simulation method using ABAQUS software was proposed to investigate the seismic response of the integral structure of the PSFRC frame. Finite element models for both PSFRC and RC frames were established, and their seismic performance was analyzed under cyclic loading and the El Centro seismic wave. Various parameters including peak loading capacity, stiffness degradation, peak acceleration value, inter-storey drift ratio, and concrete damage value were considered. The finite element analysis results revealed that the load-carrying capacity of the PSFRC frame (435.33 kN) was approximately 30 % higher than that of the RC frame (386.48 kN). Furthermore, at the peak acceleration of 600 gal, the maximum inter-storey drift ratio of the first floor for the PSFRC frame was 1/58, which was below the limit value of 1/50. The plastic hinge position at the beam end of the PSFRC frame was further from the core area, aligning with seismic design objectives. This research provides valuable insights into the design of fabricated building structures and methods for analyzing seismic performance.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.