DongXing Cao , LiMing Wang , JunRu Wang , XiangYing Guo , HaiTao Li
{"title":"Design and sound absorption analysis of labyrinthine acoustic metamaterials based on fractal theory","authors":"DongXing Cao , LiMing Wang , JunRu Wang , XiangYing Guo , HaiTao Li","doi":"10.1016/j.ijsolstr.2024.113121","DOIUrl":null,"url":null,"abstract":"<div><div>Acoustic metamaterials exhibit exceptional sound absorption capabilities. This study introduces a fractal labyrinthine acoustic metamaterial (FLAM) designed for sound absorption analyses in a low-frequency range of 1–2000 Hz. The fractal curve is constructed through side substitution on an isosceles right triangle, which is chosen as the spatial recursive substructure due to its self-similarity. The FLAM model is then developed. With the thermal viscous losses considered in narrow channels, the sound absorption coefficient of this model is theoretically analyzed as the structural parameters significantly affect the sound absorption. A comprehensive analysis of low-frequency sound absorption performance is conducted for the first three orders, and the reconstruction of the structure with different combinations of fractal orders is examined to optimize the FLAM. The results show that the proposed FLAM achieves nearly perfect absorption in the 50–400 Hz range, with peak absorption coefficients of 0.99, 0.95, and 0.95 for the first three orders. The proposed FLAMs for the first three orders have total thicknesses of <span><math><mrow><mn>0.032</mn><mi>λ</mi></mrow></math></span>, <span><math><mrow><mn>0.021</mn><mi>λ</mi></mrow></math></span>, and <span><math><mrow><mn>0.019</mn><mi>λ</mi></mrow></math></span>, demonstrating excellent low-frequency sound absorption at deep sub-wavelength scales.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"306 ","pages":"Article 113121"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004803","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic metamaterials exhibit exceptional sound absorption capabilities. This study introduces a fractal labyrinthine acoustic metamaterial (FLAM) designed for sound absorption analyses in a low-frequency range of 1–2000 Hz. The fractal curve is constructed through side substitution on an isosceles right triangle, which is chosen as the spatial recursive substructure due to its self-similarity. The FLAM model is then developed. With the thermal viscous losses considered in narrow channels, the sound absorption coefficient of this model is theoretically analyzed as the structural parameters significantly affect the sound absorption. A comprehensive analysis of low-frequency sound absorption performance is conducted for the first three orders, and the reconstruction of the structure with different combinations of fractal orders is examined to optimize the FLAM. The results show that the proposed FLAM achieves nearly perfect absorption in the 50–400 Hz range, with peak absorption coefficients of 0.99, 0.95, and 0.95 for the first three orders. The proposed FLAMs for the first three orders have total thicknesses of , , and , demonstrating excellent low-frequency sound absorption at deep sub-wavelength scales.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.