{"title":"Genome-wide identification and characterization of FORMIN genes in cotton: Implications for abiotic stress tolerance","authors":"Rasmieh Hamid , Feba Jacob , Zahra Ghorbanzadeh , Mohsen Mardi , Shohreh Ariaeenejad , Mehrshad Zeinalabedini , Mohammad Reza Ghaffari","doi":"10.1016/j.plgene.2024.100474","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Formins are highly conserved proteins with multiple domains that play an important role in the interaction with microfilaments and microtubules and thus regulate actin organisation and cytoskeletal dynamics. Despite their importance in plant development and response to stress, the study of FORMIN (FH) genes in cotton, an important fibre crop, remains limited. The genetic diversity of these genes is critical for improving the adaptability of cotton to environmental stress, which is a major challenge for cotton breeding programmes aimed at improving abiotic stress tolerance.</div></div><div><h3>Results</h3><div>Through comprehensive bioinformatics approaches, we identified 46, 50 and 27 putative <em>FH</em> genes in <em>Gossypium hirsutum</em>, <em>G. barbadense</em> and their diploid ancestors <em>G. arboreum</em> and G. <em>raimondii</em>, respectively. A phylogenetic analysis classified these genes into five subfamilies and revealed evolutionary relationships to <em>Arabidopsis thaliana</em>. Syntenic and collinear analyses showed that genomic duplications in cotton have driven the expansion of the FH gene family. Structural analysis showed significant variations in sequence length and conserved motifs. Promoter analysis revealed several cis-acting elements associated with growth, stress response and hormonal signalling. Protein-protein interaction predictions suggest involvement in hormone signalling, cytoskeletal regulation and cell wall dynamics. Differential expression of <em>G. hirsutum</em> FH (GhFH) genes in different cotton tissues under drought and osmotic stress was confirmed by qRT-PCR.</div></div><div><h3>Conclusion</h3><div>This study provides new insights into the functional diversity and evolutionary dynamics of FH genes in cotton and emphasises their potential role in improving abiotic stress tolerance. By identifying key regulatory genes involved in stress adaptation, this research contributes to the development of more resilient cotton varieties through targeted breeding strategies. The results underline the importance of genetic diversity in enabling cotton breeding programmes to overcome the challenges posed by abiotic stress.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"40 ","pages":"Article 100474"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Formins are highly conserved proteins with multiple domains that play an important role in the interaction with microfilaments and microtubules and thus regulate actin organisation and cytoskeletal dynamics. Despite their importance in plant development and response to stress, the study of FORMIN (FH) genes in cotton, an important fibre crop, remains limited. The genetic diversity of these genes is critical for improving the adaptability of cotton to environmental stress, which is a major challenge for cotton breeding programmes aimed at improving abiotic stress tolerance.
Results
Through comprehensive bioinformatics approaches, we identified 46, 50 and 27 putative FH genes in Gossypium hirsutum, G. barbadense and their diploid ancestors G. arboreum and G. raimondii, respectively. A phylogenetic analysis classified these genes into five subfamilies and revealed evolutionary relationships to Arabidopsis thaliana. Syntenic and collinear analyses showed that genomic duplications in cotton have driven the expansion of the FH gene family. Structural analysis showed significant variations in sequence length and conserved motifs. Promoter analysis revealed several cis-acting elements associated with growth, stress response and hormonal signalling. Protein-protein interaction predictions suggest involvement in hormone signalling, cytoskeletal regulation and cell wall dynamics. Differential expression of G. hirsutum FH (GhFH) genes in different cotton tissues under drought and osmotic stress was confirmed by qRT-PCR.
Conclusion
This study provides new insights into the functional diversity and evolutionary dynamics of FH genes in cotton and emphasises their potential role in improving abiotic stress tolerance. By identifying key regulatory genes involved in stress adaptation, this research contributes to the development of more resilient cotton varieties through targeted breeding strategies. The results underline the importance of genetic diversity in enabling cotton breeding programmes to overcome the challenges posed by abiotic stress.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.