{"title":"Carbon dot-based type I photosensitizers for photocatalytic oxidation reaction of arylboric acid and N-phenyl tetrahydroisoquinoline","authors":"Zhong-Lin Guo , Kai-kai Niu , Yu-Guang Lv , Ling-Bao Xing","doi":"10.1016/j.mcat.2024.114625","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dots (CDs) have emerged as promising materials for photocatalytic organic transformations due to their excellent photostability, tunable electronic properties, and environmental friendliness; However, the ability of CDs to selectively generate reactive oxygen species (ROS) and its integration with organic photocatalytic synthesis applications has always been a long-term challenge. In this work, we synthesized a new nitrogen and phosphorus co-doped carbon dots (N,P-CDs) with enhanced light absorption and notable efficiency in generating superoxide anion (O<sub>2</sub><sup>•−</sup>) selectively. Leveraging the selective generation of superoxide anions, we achieved highly efficient photooxidation of boronic acids and N-phenyl tetrahydroisoquinolines, demonstrating the practical applicability of N,P-CDs as photocatalysts and represents good functional-group tolerance as well as a broad substrate scope. This study provides valuable insights into the design of carbon-based photocatalysts with controlled ROS generation, opening new avenues for environmentally benign organic transformations.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114625"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008071","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dots (CDs) have emerged as promising materials for photocatalytic organic transformations due to their excellent photostability, tunable electronic properties, and environmental friendliness; However, the ability of CDs to selectively generate reactive oxygen species (ROS) and its integration with organic photocatalytic synthesis applications has always been a long-term challenge. In this work, we synthesized a new nitrogen and phosphorus co-doped carbon dots (N,P-CDs) with enhanced light absorption and notable efficiency in generating superoxide anion (O2•−) selectively. Leveraging the selective generation of superoxide anions, we achieved highly efficient photooxidation of boronic acids and N-phenyl tetrahydroisoquinolines, demonstrating the practical applicability of N,P-CDs as photocatalysts and represents good functional-group tolerance as well as a broad substrate scope. This study provides valuable insights into the design of carbon-based photocatalysts with controlled ROS generation, opening new avenues for environmentally benign organic transformations.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods