{"title":"Efficient catalysis for the Baeyer-Villiger oxidation reaction of 2-adamantone in acidic deep eutectic solvents","authors":"Guiyi Zhao, Weiguang Wang, Kaixuan Yang, Ting Su, Zhiguo Zhu, Hongying Lü","doi":"10.1016/j.mcat.2024.114629","DOIUrl":null,"url":null,"abstract":"<div><div>A deep eutectic solvent (DES) comprising p-toluenesulfonic acid (PTSA) and polyethylene glycol 200 (PEG200) was synthesized and applied to the Baeyer-Villiger (B-V) oxidation reaction of 2-adamantanone, which exhibited good catalytic effect and cyclic stability under relatively mild conditions. It was found that the hydrogen bond of DESs not only governed their physical properties, such as viscosity and electrical conductivity, but also influenced their chemical behavior, including the catalytic effect in B-V oxidation reaction. By adjusting the composition, the hydrogen bond properties can be optimized. This study aims to elucidate the intricate relationship between composition, hydrogen bond strength, and physicochemical properties of DESs, thereby establishing a preliminary theoretical foundation for a comprehensive understanding and construction of DESs systems. This provides a novel and promising environmentally friendly approach for the B-V oxidation reaction.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114629"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008113","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A deep eutectic solvent (DES) comprising p-toluenesulfonic acid (PTSA) and polyethylene glycol 200 (PEG200) was synthesized and applied to the Baeyer-Villiger (B-V) oxidation reaction of 2-adamantanone, which exhibited good catalytic effect and cyclic stability under relatively mild conditions. It was found that the hydrogen bond of DESs not only governed their physical properties, such as viscosity and electrical conductivity, but also influenced their chemical behavior, including the catalytic effect in B-V oxidation reaction. By adjusting the composition, the hydrogen bond properties can be optimized. This study aims to elucidate the intricate relationship between composition, hydrogen bond strength, and physicochemical properties of DESs, thereby establishing a preliminary theoretical foundation for a comprehensive understanding and construction of DESs systems. This provides a novel and promising environmentally friendly approach for the B-V oxidation reaction.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods