{"title":"An investigation of rapid surface melting in nanowires","authors":"Benhour Amirian, Kaan Inal","doi":"10.1016/j.ijsolstr.2024.113106","DOIUrl":null,"url":null,"abstract":"<div><div>The investigation into virtual melting phenomena in nanowires holds significant relevance owing to its profound impact on material durability under extreme loading conditions. Thus, the exploration of this pivotal plastic deformation mechanism is undertaken utilizing the phase-field methodology. Employing a monolithic solver, we solve the coupled highly nonlinear time-dependent Ginzburg–Landau equation and dynamic elasticity equation. Our analysis encompasses the consideration of surface tension stress in conjunction with a coherent solid–liquid interface subjected to uniaxial transformation strain, thereby unveiling intriguing facets of melting phenomena. The investigation delves into the influence of transformation strain, kinetic coefficient, and temperature on the thickness of the solid–liquid interface and its corresponding velocity. This analysis is conducted through meticulous comparison with existing experimental data and molecular dynamics simulation. Moreover, employing the phase-field method yields precise descriptions of the system kinetics, capturing virtual melting phenomena in both pristine and flawed nanowire configurations.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"306 ","pages":"Article 113106"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004657","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation into virtual melting phenomena in nanowires holds significant relevance owing to its profound impact on material durability under extreme loading conditions. Thus, the exploration of this pivotal plastic deformation mechanism is undertaken utilizing the phase-field methodology. Employing a monolithic solver, we solve the coupled highly nonlinear time-dependent Ginzburg–Landau equation and dynamic elasticity equation. Our analysis encompasses the consideration of surface tension stress in conjunction with a coherent solid–liquid interface subjected to uniaxial transformation strain, thereby unveiling intriguing facets of melting phenomena. The investigation delves into the influence of transformation strain, kinetic coefficient, and temperature on the thickness of the solid–liquid interface and its corresponding velocity. This analysis is conducted through meticulous comparison with existing experimental data and molecular dynamics simulation. Moreover, employing the phase-field method yields precise descriptions of the system kinetics, capturing virtual melting phenomena in both pristine and flawed nanowire configurations.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.