Efficient audio–visual information fusion using encoding pace synchronization for Audio–Visual Speech Separation

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xinmeng Xu , Weiping Tu , Yuhong Yang
{"title":"Efficient audio–visual information fusion using encoding pace synchronization for Audio–Visual Speech Separation","authors":"Xinmeng Xu ,&nbsp;Weiping Tu ,&nbsp;Yuhong Yang","doi":"10.1016/j.inffus.2024.102749","DOIUrl":null,"url":null,"abstract":"<div><div>Contemporary audio–visual speech separation (AVSS) models typically use encoders that merge audio and visual representations by concatenating them at a specific layer. This approach assumes that both modalities progress at the same pace and that information is adequately encoded at the chosen fusion layer. However, this assumption is often flawed due to inherent differences between the audio and visual modalities. In particular, the audio modality, being more directly tied to the final output (i.e., denoised speech), tends to converge faster than the visual modality. This discrepancy creates a persistent challenge in selecting the appropriate layer for fusion. To address this, we propose the Encoding Pace Synchronization Network (EPS-Net) for AVSS. EPS-Net allows for the independent encoding of the two modalities, enabling each to be processed at its own pace. At the same time, it establishes communication between the audio and visual modalities at corresponding encoding layers, progressively synchronizing their encoding speeds. This approach facilitates the gradual fusion of information while preserving the unique characteristics of each modality. The effectiveness of the proposed method has been validated through extensive experiments on the LRS2, LRS3, and VoxCeleb2 datasets, demonstrating superior performance over state-of-the-art methods.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102749"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156625352400527X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary audio–visual speech separation (AVSS) models typically use encoders that merge audio and visual representations by concatenating them at a specific layer. This approach assumes that both modalities progress at the same pace and that information is adequately encoded at the chosen fusion layer. However, this assumption is often flawed due to inherent differences between the audio and visual modalities. In particular, the audio modality, being more directly tied to the final output (i.e., denoised speech), tends to converge faster than the visual modality. This discrepancy creates a persistent challenge in selecting the appropriate layer for fusion. To address this, we propose the Encoding Pace Synchronization Network (EPS-Net) for AVSS. EPS-Net allows for the independent encoding of the two modalities, enabling each to be processed at its own pace. At the same time, it establishes communication between the audio and visual modalities at corresponding encoding layers, progressively synchronizing their encoding speeds. This approach facilitates the gradual fusion of information while preserving the unique characteristics of each modality. The effectiveness of the proposed method has been validated through extensive experiments on the LRS2, LRS3, and VoxCeleb2 datasets, demonstrating superior performance over state-of-the-art methods.
利用编码同步实现高效视听信息融合,实现视听语音分离
当代的视听语音分离(AVSS)模型通常使用编码器,通过在特定层上串联来融合视听表征。这种方法假设两种模态以相同的速度发展,并且所选的融合层已对信息进行了充分编码。然而,由于音频和视觉模式之间的固有差异,这一假设往往存在缺陷。尤其是音频模式,由于与最终输出(即去噪语音)有更直接的联系,其融合速度往往快于视觉模式。这种差异给选择合适的融合层带来了持续的挑战。为了解决这个问题,我们提出了用于 AVSS 的编码同步网络(EPS-Net)。EPS-Net 允许对两种模式进行独立编码,使每种模式都能以自己的速度进行处理。同时,它在相应的编码层建立音频和视觉模式之间的通信,逐步同步它们的编码速度。这种方法既能促进信息的逐步融合,又能保持每种模式的独特性。通过在 LRS2、LRS3 和 VoxCeleb2 数据集上进行大量实验,验证了所提方法的有效性,证明其性能优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信