Early monitoring of drought stress in safflower (Carthamus tinctorius L.) using hyperspectral imaging: A comparison of machine learning tools and feature selection approaches
Fatemeh Salek , Seyed Ahmad Mireei , Abbas Hemmat , Mehrnoosh Jafari , Mohammad R. Sabzalian , Majid Nazeri , Wouter Saeys
{"title":"Early monitoring of drought stress in safflower (Carthamus tinctorius L.) using hyperspectral imaging: A comparison of machine learning tools and feature selection approaches","authors":"Fatemeh Salek , Seyed Ahmad Mireei , Abbas Hemmat , Mehrnoosh Jafari , Mohammad R. Sabzalian , Majid Nazeri , Wouter Saeys","doi":"10.1016/j.stress.2024.100653","DOIUrl":null,"url":null,"abstract":"<div><div>Early detection of drought stress is essential for preventing permanent plant damage and minimizing yield loss. This study utilized hyperspectral imaging at the leaf level to visualize drought stress in safflower plants (<em>Carthamus tinctorius</em> L.). Three safflower genotypes, Palenus, A82, and IL-111, were cultivated under three irrigation levels. Stress conditions were simulated by depleting 50%, 70%, and 90% of soil water content, representing unstressed (US), mild stress (MS), and severe stress (SS) conditions, respectively. Hyperspectral images of leaf samples were captured before any visible signs of water scarcity emerged. Classification analysis was performed using the full mean spectral data with partial least squares discriminant analysis, soft independent modeling of class analogy (SIMCA), support vector machines, and artificial neural network (ANN) classifiers. Feature selection methods were applied to extract the most informative wavebands, and ANN was used to build predictive models. Spatial analysis involved pixel-wise classification using both unsupervised (k-means clustering) and supervised (best classifiers) approaches. ANN outperformed other classifiers using the entire spectral data, effectively distinguishing US, MS, and SS classes in the Palenus, A82, and IL-111 genotypes, achieving F1-scores of 92.22%, 96.01%, and 96.47%, respectively. Among the feature selection methods, SIMCA-based features excelled in monitoring stress conditions in the Palenus and A82 genotypes. In supervised spatial analysis, ANN models clearly depicted the progression of stress in leaves across different genotypes. This study demonstrates the potential of hyperspectral imaging to differentiate various levels of drought stress in safflower, an important oilseed crop.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100653"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Early detection of drought stress is essential for preventing permanent plant damage and minimizing yield loss. This study utilized hyperspectral imaging at the leaf level to visualize drought stress in safflower plants (Carthamus tinctorius L.). Three safflower genotypes, Palenus, A82, and IL-111, were cultivated under three irrigation levels. Stress conditions were simulated by depleting 50%, 70%, and 90% of soil water content, representing unstressed (US), mild stress (MS), and severe stress (SS) conditions, respectively. Hyperspectral images of leaf samples were captured before any visible signs of water scarcity emerged. Classification analysis was performed using the full mean spectral data with partial least squares discriminant analysis, soft independent modeling of class analogy (SIMCA), support vector machines, and artificial neural network (ANN) classifiers. Feature selection methods were applied to extract the most informative wavebands, and ANN was used to build predictive models. Spatial analysis involved pixel-wise classification using both unsupervised (k-means clustering) and supervised (best classifiers) approaches. ANN outperformed other classifiers using the entire spectral data, effectively distinguishing US, MS, and SS classes in the Palenus, A82, and IL-111 genotypes, achieving F1-scores of 92.22%, 96.01%, and 96.47%, respectively. Among the feature selection methods, SIMCA-based features excelled in monitoring stress conditions in the Palenus and A82 genotypes. In supervised spatial analysis, ANN models clearly depicted the progression of stress in leaves across different genotypes. This study demonstrates the potential of hyperspectral imaging to differentiate various levels of drought stress in safflower, an important oilseed crop.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.