Coumarin-based polyurethane with triple-shape memory effect, photo-responsive self-healing, photolithography, and dual-mode encoding/decoding for smart data transfer

IF 5.8 2区 化学 Q1 POLYMER SCIENCE
Mohammad Reza Miralvar , Amin Babaie , Mostafa Rezaei , Hossein Roghani-Mamaqani , Reza Lotfi Mayan-Sofla , Paya HassanAlizadeh
{"title":"Coumarin-based polyurethane with triple-shape memory effect, photo-responsive self-healing, photolithography, and dual-mode encoding/decoding for smart data transfer","authors":"Mohammad Reza Miralvar ,&nbsp;Amin Babaie ,&nbsp;Mostafa Rezaei ,&nbsp;Hossein Roghani-Mamaqani ,&nbsp;Reza Lotfi Mayan-Sofla ,&nbsp;Paya HassanAlizadeh","doi":"10.1016/j.eurpolymj.2024.113528","DOIUrl":null,"url":null,"abstract":"<div><div>Human future needs are moving toward the use of intelligent materials providing multiple smart functionalities in a single system. Herein, thermo and photo-responsive shape memory polyurethanes (SMPUs) with several smart functionalities were developed for different applications, including sensors and actuators, anti-counterfeiting inks, ink-free rewritable media, self-healing coatings, and smart data transfer. The SMPUs were prepared based on semi-crystalline polycaprolactone soft segments, as the thermo-responsive shape memory switches, and coumarin-based chain extenders, as the photo-responsive groups. The photo-induced reversible cycloaddition reactions of the coumarin groups upon UV light irradiation provides a photo-responsive shape memory effect. Moreover, the diverse fluorescence emission intensities of the dimerized and undimerized coumarin groups presented the photolithography ability of the samples. Fourier-transform infrared spectroscopy and differential scanning calorimetry studies showed that the presence of coumarin bulky groups and their dimerization under UV irradiation substantially changed the microphase separation of SMPUs. The mechanical studies showed that the morphological variation in SMPUs structure transforms the mechanical behavior of the samples from highly cross-linked mechanical behavior to a more ductile one. In addition, the photo-induced cross-linking of PU chains results in a 3D network with high coumarin content, which improved mechanical strength of the samples. Resistance against swelling in hot dimethylformamide verified dimerization of the coumarin groups. This study follows a complete report on the synthesis, characterization, and some smart functionalities of the coumarin-based SMPUs.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113528"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724007894","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Human future needs are moving toward the use of intelligent materials providing multiple smart functionalities in a single system. Herein, thermo and photo-responsive shape memory polyurethanes (SMPUs) with several smart functionalities were developed for different applications, including sensors and actuators, anti-counterfeiting inks, ink-free rewritable media, self-healing coatings, and smart data transfer. The SMPUs were prepared based on semi-crystalline polycaprolactone soft segments, as the thermo-responsive shape memory switches, and coumarin-based chain extenders, as the photo-responsive groups. The photo-induced reversible cycloaddition reactions of the coumarin groups upon UV light irradiation provides a photo-responsive shape memory effect. Moreover, the diverse fluorescence emission intensities of the dimerized and undimerized coumarin groups presented the photolithography ability of the samples. Fourier-transform infrared spectroscopy and differential scanning calorimetry studies showed that the presence of coumarin bulky groups and their dimerization under UV irradiation substantially changed the microphase separation of SMPUs. The mechanical studies showed that the morphological variation in SMPUs structure transforms the mechanical behavior of the samples from highly cross-linked mechanical behavior to a more ductile one. In addition, the photo-induced cross-linking of PU chains results in a 3D network with high coumarin content, which improved mechanical strength of the samples. Resistance against swelling in hot dimethylformamide verified dimerization of the coumarin groups. This study follows a complete report on the synthesis, characterization, and some smart functionalities of the coumarin-based SMPUs.

Abstract Image

具有三重形状记忆效果、光响应自修复、光刻技术和双模编码/解码功能的香豆素基聚氨酯,可用于智能数据传输
人类未来的需求正朝着在单一系统中使用具有多种智能功能的智能材料的方向发展。在此,我们开发了具有多种智能功能的热响应和光响应形状记忆聚氨酯(SMPUs),可用于传感器和致动器、防伪油墨、无墨可重写介质、自修复涂层和智能数据传输等不同应用。SMPU 的制备基于半结晶聚己内酯软段(作为热响应形状记忆开关)和香豆素基链延伸剂(作为光响应基团)。在紫外线照射下,香豆素基团会发生光诱导的可逆环加成反应,从而产生光响应形状记忆效应。此外,二聚化和未二聚化香豆素基团的不同荧光发射强度显示了样品的光刻能力。傅立叶变换红外光谱和差示扫描量热研究表明,香豆素大分子基团的存在及其在紫外线照射下的二聚化大大改变了 SMPU 的微相分离。力学研究表明,SMPU 结构的形态变化使样品的力学行为从高度交联的力学行为转变为更具韧性的力学行为。此外,聚氨酯链的光诱导交联形成了香豆素含量较高的三维网络,从而提高了样品的机械强度。在热二甲基甲酰胺中的抗膨胀性验证了香豆素基团的二聚化。本研究完整报告了香豆素基 SMPU 的合成、表征和一些智能功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信