{"title":"Dirac cohomology, branching laws and Wallach modules","authors":"Chao-Ping Dong , Yongzhi Luan , Haojun Xu","doi":"10.1016/j.jalgebra.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>The idea of using Dirac cohomology to study branching laws was initiated by Huang, et al. (2013) <span><span>[11]</span></span>. One of their results says that the Dirac cohomology of <em>π</em> completely determines <span><math><mi>π</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>K</mi></mrow></msub></math></span>, where <em>π</em> is any irreducible unitarizable highest weight <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>K</mi><mo>)</mo></math></span> module. This paper aims to develop this idea for the exceptional Lie groups <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn><mo>(</mo><mo>−</mo><mn>14</mn><mo>)</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn><mo>(</mo><mo>−</mo><mn>25</mn><mo>)</mo></mrow></msub></math></span>: we recover the <em>K</em>-spectrum of the Wallach modules from their Dirac cohomology.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The idea of using Dirac cohomology to study branching laws was initiated by Huang, et al. (2013) [11]. One of their results says that the Dirac cohomology of π completely determines , where π is any irreducible unitarizable highest weight module. This paper aims to develop this idea for the exceptional Lie groups and : we recover the K-spectrum of the Wallach modules from their Dirac cohomology.