Dirac cohomology, branching laws and Wallach modules

Pub Date : 2024-10-24 DOI:10.1016/j.jalgebra.2024.10.022
Chao-Ping Dong , Yongzhi Luan , Haojun Xu
{"title":"Dirac cohomology, branching laws and Wallach modules","authors":"Chao-Ping Dong ,&nbsp;Yongzhi Luan ,&nbsp;Haojun Xu","doi":"10.1016/j.jalgebra.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>The idea of using Dirac cohomology to study branching laws was initiated by Huang, et al. (2013) <span><span>[11]</span></span>. One of their results says that the Dirac cohomology of <em>π</em> completely determines <span><math><mi>π</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>K</mi></mrow></msub></math></span>, where <em>π</em> is any irreducible unitarizable highest weight <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>K</mi><mo>)</mo></math></span> module. This paper aims to develop this idea for the exceptional Lie groups <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn><mo>(</mo><mo>−</mo><mn>14</mn><mo>)</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn><mo>(</mo><mo>−</mo><mn>25</mn><mo>)</mo></mrow></msub></math></span>: we recover the <em>K</em>-spectrum of the Wallach modules from their Dirac cohomology.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The idea of using Dirac cohomology to study branching laws was initiated by Huang, et al. (2013) [11]. One of their results says that the Dirac cohomology of π completely determines π|K, where π is any irreducible unitarizable highest weight (g,K) module. This paper aims to develop this idea for the exceptional Lie groups E6(14) and E7(25): we recover the K-spectrum of the Wallach modules from their Dirac cohomology.
分享
查看原文
狄拉克同调、分支律和瓦拉几模块
使用狄拉克同调来研究分支定律的想法是由 Huang 等人(2013 年)[11] 提出的。他们的一个结果指出,π的狄拉克同调完全决定了π|K,其中π是任何不可还原的可单位化的最高权重(g,K)模块。本文旨在将这一思想发展到例外李群 E6(-14) 和 E7(-25) 中:我们从它们的狄拉克同调中恢复 Wallach 模块的 K 谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信