Dirac cohomology, branching laws and Wallach modules

IF 0.8 2区 数学 Q2 MATHEMATICS
Chao-Ping Dong , Yongzhi Luan , Haojun Xu
{"title":"Dirac cohomology, branching laws and Wallach modules","authors":"Chao-Ping Dong ,&nbsp;Yongzhi Luan ,&nbsp;Haojun Xu","doi":"10.1016/j.jalgebra.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>The idea of using Dirac cohomology to study branching laws was initiated by Huang, et al. (2013) <span><span>[11]</span></span>. One of their results says that the Dirac cohomology of <em>π</em> completely determines <span><math><mi>π</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>K</mi></mrow></msub></math></span>, where <em>π</em> is any irreducible unitarizable highest weight <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>K</mi><mo>)</mo></math></span> module. This paper aims to develop this idea for the exceptional Lie groups <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn><mo>(</mo><mo>−</mo><mn>14</mn><mo>)</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn><mo>(</mo><mo>−</mo><mn>25</mn><mo>)</mo></mrow></msub></math></span>: we recover the <em>K</em>-spectrum of the Wallach modules from their Dirac cohomology.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"664 ","pages":"Pages 719-737"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005659","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The idea of using Dirac cohomology to study branching laws was initiated by Huang, et al. (2013) [11]. One of their results says that the Dirac cohomology of π completely determines π|K, where π is any irreducible unitarizable highest weight (g,K) module. This paper aims to develop this idea for the exceptional Lie groups E6(14) and E7(25): we recover the K-spectrum of the Wallach modules from their Dirac cohomology.
狄拉克同调、分支律和瓦拉几模块
使用狄拉克同调来研究分支定律的想法是由 Huang 等人(2013 年)[11] 提出的。他们的一个结果指出,π的狄拉克同调完全决定了π|K,其中π是任何不可还原的可单位化的最高权重(g,K)模块。本文旨在将这一思想发展到例外李群 E6(-14) 和 E7(-25) 中:我们从它们的狄拉克同调中恢复 Wallach 模块的 K 谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信