Fourier coefficients of Jacobi Poincaré series and applications

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abhash Kumar Jha, Animesh Sarkar
{"title":"Fourier coefficients of Jacobi Poincaré series and applications","authors":"Abhash Kumar Jha,&nbsp;Animesh Sarkar","doi":"10.1016/j.jmaa.2024.128994","DOIUrl":null,"url":null,"abstract":"<div><div>We define Jacobi Poincaré series over Cayley numbers and explicitly compute its Fourier coefficients. As an application, we obtain an estimate for the Fourier coefficients of a Jacobi cusp form. We also evaluate certain Petersson scalar products involving Jacobi cusp forms and Poincaré series. This evaluation yields certain special values of shifted convolution of Dirichlet series of Rankin-Selberg type associated to Jacobi cusp forms in consideration.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We define Jacobi Poincaré series over Cayley numbers and explicitly compute its Fourier coefficients. As an application, we obtain an estimate for the Fourier coefficients of a Jacobi cusp form. We also evaluate certain Petersson scalar products involving Jacobi cusp forms and Poincaré series. This evaluation yields certain special values of shifted convolution of Dirichlet series of Rankin-Selberg type associated to Jacobi cusp forms in consideration.
雅可比波恩卡列的傅里叶系数及其应用
我们定义了凯利数上的雅可比庞加莱数列,并明确计算了其傅里叶系数。作为一种应用,我们得到了雅可比凹凸形式傅里叶系数的估计值。我们还评估了涉及雅可比凹凸形式和波恩卡列数列的某些彼得森标量积。通过评估,我们可以得到与雅可比尖顶形式相关的兰金-塞尔伯格类型的移位卷积的某些特殊值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信