{"title":"On type I blowup of some nonlinear heat equations with a potential","authors":"Gui-Chun Jiang , Yu-Ying Wang , Gao-Feng Zheng","doi":"10.1016/j.jmaa.2024.128990","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with the following initial-boundary value problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>Q</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>p</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span>, and <span><math><mi>Q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>R</mi><mo>]</mo><mo>)</mo></math></span>, <span><math><mn>0</mn><mo><</mo><munder><mrow><mi>C</mi></mrow><mo>_</mo></munder><mo>≤</mo><mi>Q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>≤</mo><mover><mrow><mi>C</mi></mrow><mo>‾</mo></mover><mo><</mo><mo>∞</mo><mo>,</mo><mspace></mspace><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>r</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>. We extend the asymptotic behavior results, which is well-known when <em>Q</em> is constant according to Matano-Merle (cf. <span><span>[25]</span></span>), for the blow-up solutions. More precisely, we show that when <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>≤</mo><mi>p</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the blowup of radial solution to this problem is always of Type I. This result partially generalizes the conclusions in <span><span>[25]</span></span> for <span><math><mi>Q</mi><mo>≡</mo><mn>1</mn></math></span>. This extension is nontrivial due to the appearance of <em>Q</em>. The quasi-monotonicity formula established by the third author and Cheng in <span><span>[8]</span></span> allows us to use an energy method to get a priori estimates on the rescaled solutions. The contraction mapping principle shows the existence of singular stationary solutions to an associated elliptic equation with a potential. In the end, the properties of zero number for solutions lead to the nonexistence of type II singularity for the problem.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128990"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009120","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we are concerned with the following initial-boundary value problem where , , and , . We extend the asymptotic behavior results, which is well-known when Q is constant according to Matano-Merle (cf. [25]), for the blow-up solutions. More precisely, we show that when , the blowup of radial solution to this problem is always of Type I. This result partially generalizes the conclusions in [25] for . This extension is nontrivial due to the appearance of Q. The quasi-monotonicity formula established by the third author and Cheng in [8] allows us to use an energy method to get a priori estimates on the rescaled solutions. The contraction mapping principle shows the existence of singular stationary solutions to an associated elliptic equation with a potential. In the end, the properties of zero number for solutions lead to the nonexistence of type II singularity for the problem.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.