Gang Hu , Yixuan Zheng , Essam H. Houssein , Guo Wei
{"title":"GSRPSO: A multi-strategy integrated particle swarm algorithm for multi-threshold segmentation of real cervical cancer images","authors":"Gang Hu , Yixuan Zheng , Essam H. Houssein , Guo Wei","doi":"10.1016/j.swevo.2024.101766","DOIUrl":null,"url":null,"abstract":"<div><div>Cervical cancer is one of the most common gynecological malignant tumors and the fourth largest malignant tumor endangering the life and health of women worldwide. The lesion areas of cervical cancer usually show complexity and diversity. To distinguish different cervical lesion sites and assist doctors in diagnosis and decision-making, this paper first proposes a multi-strategy integrated particle swarm optimization algorithm (GSRPSO, for short). The four strategies in GSRPSO work together to improve its optimization capabilities. Among them, the dynamic parameters balance the exploration and exploitation phases. The gaining sharing strategy and the random position updating strategy accelerate the convergence process while enhancing the diversity of the population. The vertical crossover mutation strategy improves local exploitation and avoids premature stagnation of the algorithm. The optimization performance of GSRPSO is validated by comparison experiments with 15 state-of-the-art algorithms on the CEC2020 test set. In addition, we established a MIS method based on the GSRPSO algorithm by combining the non-local mean algorithm and 2D Kapur entropy. This method is compared with the MIS methods combining 2D Renyi entropy, 2D Tsallis entropy, and 2D Masi entropy in a comparison experiment with four sets of thresholds on six BSDS500 images. The experimental results show that this MIS method exhibits obvious advantages in segmentation quality and stability. Finally, nine cervical cancer images are segmented using the GSRPSO-based MIS method, and experiments are conducted with nine excellent optimization algorithms under six different sets of thresholds. The experimental results show that this MIS method demonstrates better segmentation quality and accuracy than similar methods with the optimal evaluation indexes PSNR=28.3645, SSIM=0.8996, FSIM=0.9494, AD=8.1939, and NAE=0.0710. In conclusion, the GSRPSO-based MIS method is one of a class of highly promising methods to assist physicians in accurately diagnosing cervical cancer.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101766"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224003043","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical cancer is one of the most common gynecological malignant tumors and the fourth largest malignant tumor endangering the life and health of women worldwide. The lesion areas of cervical cancer usually show complexity and diversity. To distinguish different cervical lesion sites and assist doctors in diagnosis and decision-making, this paper first proposes a multi-strategy integrated particle swarm optimization algorithm (GSRPSO, for short). The four strategies in GSRPSO work together to improve its optimization capabilities. Among them, the dynamic parameters balance the exploration and exploitation phases. The gaining sharing strategy and the random position updating strategy accelerate the convergence process while enhancing the diversity of the population. The vertical crossover mutation strategy improves local exploitation and avoids premature stagnation of the algorithm. The optimization performance of GSRPSO is validated by comparison experiments with 15 state-of-the-art algorithms on the CEC2020 test set. In addition, we established a MIS method based on the GSRPSO algorithm by combining the non-local mean algorithm and 2D Kapur entropy. This method is compared with the MIS methods combining 2D Renyi entropy, 2D Tsallis entropy, and 2D Masi entropy in a comparison experiment with four sets of thresholds on six BSDS500 images. The experimental results show that this MIS method exhibits obvious advantages in segmentation quality and stability. Finally, nine cervical cancer images are segmented using the GSRPSO-based MIS method, and experiments are conducted with nine excellent optimization algorithms under six different sets of thresholds. The experimental results show that this MIS method demonstrates better segmentation quality and accuracy than similar methods with the optimal evaluation indexes PSNR=28.3645, SSIM=0.8996, FSIM=0.9494, AD=8.1939, and NAE=0.0710. In conclusion, the GSRPSO-based MIS method is one of a class of highly promising methods to assist physicians in accurately diagnosing cervical cancer.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.