Tattwamasi Amrutam , Yair Hartman , Hanna Oppelmayer
{"title":"On the amenable subalgebras of group von Neumann algebras","authors":"Tattwamasi Amrutam , Yair Hartman , Hanna Oppelmayer","doi":"10.1016/j.jfa.2024.110718","DOIUrl":null,"url":null,"abstract":"<div><div>We approach the study of sub-von Neumann algebras of the group von Neumann algebra <span><math><mi>L</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> for countable groups Γ from a dynamical perspective. It is shown that <span><math><mi>L</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> admits a maximal invariant amenable subalgebra. The notion of invariant probability measures (IRAs) on the space of subalgebras is introduced, analogous to the concept of Invariant Random Subgroups. And it is shown that amenable IRAs are supported on the maximal amenable invariant subalgebra.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We approach the study of sub-von Neumann algebras of the group von Neumann algebra for countable groups Γ from a dynamical perspective. It is shown that admits a maximal invariant amenable subalgebra. The notion of invariant probability measures (IRAs) on the space of subalgebras is introduced, analogous to the concept of Invariant Random Subgroups. And it is shown that amenable IRAs are supported on the maximal amenable invariant subalgebra.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis