On the amenable subalgebras of group von Neumann algebras

IF 1.7 2区 数学 Q1 MATHEMATICS
Tattwamasi Amrutam , Yair Hartman , Hanna Oppelmayer
{"title":"On the amenable subalgebras of group von Neumann algebras","authors":"Tattwamasi Amrutam ,&nbsp;Yair Hartman ,&nbsp;Hanna Oppelmayer","doi":"10.1016/j.jfa.2024.110718","DOIUrl":null,"url":null,"abstract":"<div><div>We approach the study of sub-von Neumann algebras of the group von Neumann algebra <span><math><mi>L</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> for countable groups Γ from a dynamical perspective. It is shown that <span><math><mi>L</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> admits a maximal invariant amenable subalgebra. The notion of invariant probability measures (IRAs) on the space of subalgebras is introduced, analogous to the concept of Invariant Random Subgroups. And it is shown that amenable IRAs are supported on the maximal amenable invariant subalgebra.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We approach the study of sub-von Neumann algebras of the group von Neumann algebra L(Γ) for countable groups Γ from a dynamical perspective. It is shown that L(Γ) admits a maximal invariant amenable subalgebra. The notion of invariant probability measures (IRAs) on the space of subalgebras is introduced, analogous to the concept of Invariant Random Subgroups. And it is shown that amenable IRAs are supported on the maximal amenable invariant subalgebra.
论冯-诺伊曼群代数的可变子代数
我们从动力学的角度来研究可数群 Γ 的群 von Neumann 代数 L(Γ) 的子 von Neumann 代数。研究表明,L(Γ) 存在一个最大不变可变子代数。引入了子代数空间上的不变概率度量(IRAs)概念,类似于不变随机子群的概念。并证明了可变 IRA 在最大可变不变子代数上得到支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信