Duality, BMO and Hankel operators on Bernstein spaces

IF 1.7 2区 数学 Q1 MATHEMATICS
Carlo Bellavita , Marco M. Peloso
{"title":"Duality, BMO and Hankel operators on Bernstein spaces","authors":"Carlo Bellavita ,&nbsp;Marco M. Peloso","doi":"10.1016/j.jfa.2024.110708","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we deal with the problem of describing the dual space <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of the Bernstein space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>, that is the space of entire functions of exponential type (at most) <span><math><mi>κ</mi><mo>&gt;</mo><mn>0</mn></math></span> whose restriction to the real line is Lebesgue integrable. We provide several characterizations, showing that such dual space can be described as a quotient of the space of entire functions of exponential type <em>κ</em> whose restriction to the real line are in a suitable BMO-type space, or as the space of symbols <em>b</em> for which the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> is bounded on the Paley–Wiener space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>. We also provide a characterization of <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> as the BMO space w.r.t. the Clark measures of the inner function <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mn>2</mn><mi>κ</mi><mi>z</mi></mrow></msup></math></span> on the upper half-plane, in analogy with the known description of the dual of backward-shift invariant 1-spaces on the torus. Furthermore, we show that the orthogonal projection <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>:</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>→</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> induces a bounded operator from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> onto <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div><div>Finally, we show that <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> is the dual space of a suitable VMO-type space or as the space of symbols <em>b</em> for which the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> on the Paley–Wiener space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is compact.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110708"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003963","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we deal with the problem of describing the dual space (Bκ1) of the Bernstein space Bκ1, that is the space of entire functions of exponential type (at most) κ>0 whose restriction to the real line is Lebesgue integrable. We provide several characterizations, showing that such dual space can be described as a quotient of the space of entire functions of exponential type κ whose restriction to the real line are in a suitable BMO-type space, or as the space of symbols b for which the Hankel operator Hb is bounded on the Paley–Wiener space Bκ/22. We also provide a characterization of (Bκ1) as the BMO space w.r.t. the Clark measures of the inner function ei2κz on the upper half-plane, in analogy with the known description of the dual of backward-shift invariant 1-spaces on the torus. Furthermore, we show that the orthogonal projection Pκ:L2(R)Bκ2 induces a bounded operator from L(R) onto (Bκ1).
Finally, we show that Bκ1 is the dual space of a suitable VMO-type space or as the space of symbols b for which the Hankel operator Hb on the Paley–Wiener space Bκ/22 is compact.
伯恩斯坦空间上的对偶性、BMO 和汉克尔算子
在本文中,我们讨论了描述伯恩斯坦空间 Bκ1 的对偶空间 (Bκ1)⁎ 的问题,即指数型(最多)κ>0 的全函数空间,其对实线的限制是 Lebesgue 可积分的。我们提供了几种描述,表明这种对偶空间可以被描述为指数型全函数 κ 空间的商,其对实线的限制是在合适的 BMO 型空间中,或描述为符号 b 的空间,其 Hankel 算子 Hb 在 Paley-Wiener 空间 Bκ/22 上是有界的。我们还提供了(Bκ1)⁎作为 BMO 空间的特征,即上半平面上内函数 ei2κz 的克拉克度量,这与已知的环上后移不变 1 空间对偶的描述类似。此外,我们还证明了正交投影 Pκ:L2(R)→Bκ2 从 L∞(R)到 (Bκ1)⁎ 引发了一个有界算子。最后,我们证明了 Bκ1 是一个合适的 VMO 型空间的对偶空间,或者是 Paley-Wiener 空间 Bκ/22 上的汉克尔算子 Hb 是紧凑的符号 b 空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信