Yu-Xuan Huang , Yen-Chung Lin , Chin-Kai Lin , Haw-Ming Huang
{"title":"ω-9 monounsaturated fatty acids in Sapindus mukorossi seed oil enhance calcium deposition expression of Wharton’s jelly mesenchymal stem cells","authors":"Yu-Xuan Huang , Yen-Chung Lin , Chin-Kai Lin , Haw-Ming Huang","doi":"10.1016/j.tice.2024.102595","DOIUrl":null,"url":null,"abstract":"<div><div>Promoting osteogenesis is crucial to improve successful bone regeneration in bone tissue engineering. Several studies on osteogenesis have reported positive effects of ω-9 monounsaturated fatty acids (MUFA) on bone regeneration. This study examined the potential of ω-9 monounsaturated fatty acid abundant seed oil mechanically extracted from <em>Sapindus mukorossi</em> (<em>S. mukoro</em>ssi) fruit to improve osteogeneses. After showing the presence of ω-9 MUFA in <em>S. mukorossi</em> seed oil (SM oil) through GC-MS spectrum analysis, the proliferation and differentiation of human umbilical cord Wharton’s jelly mesenchymal stem cells (WJMSCs) under SM treatment was evaluated. Our results indicate that WJMSC differentiation was induced by adding an osteogenesis-induced medium combined with SM oil. A high level of calcium deposition expression in WJMSCs induced by SM oil appears to be due to the effect of oleic acid and eicosenoic acid, both of which are ω-9 monounsaturated fatty acids. In addition, we found major contributors of SM oil-promoted WJMSC osteogenesis to be extracellular signal-regulated kinase (ERKs), c-Jun N-terminal kinase (JNKs), and the p38 MAPK pathway. The enhancement of WJMSC osteogenesis via ERK/MAPK pathways as demonstrated by qPCR analysis indicates the promise of SM oil for stem cell-based bone tissue engineering applications.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624002969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Promoting osteogenesis is crucial to improve successful bone regeneration in bone tissue engineering. Several studies on osteogenesis have reported positive effects of ω-9 monounsaturated fatty acids (MUFA) on bone regeneration. This study examined the potential of ω-9 monounsaturated fatty acid abundant seed oil mechanically extracted from Sapindus mukorossi (S. mukorossi) fruit to improve osteogeneses. After showing the presence of ω-9 MUFA in S. mukorossi seed oil (SM oil) through GC-MS spectrum analysis, the proliferation and differentiation of human umbilical cord Wharton’s jelly mesenchymal stem cells (WJMSCs) under SM treatment was evaluated. Our results indicate that WJMSC differentiation was induced by adding an osteogenesis-induced medium combined with SM oil. A high level of calcium deposition expression in WJMSCs induced by SM oil appears to be due to the effect of oleic acid and eicosenoic acid, both of which are ω-9 monounsaturated fatty acids. In addition, we found major contributors of SM oil-promoted WJMSC osteogenesis to be extracellular signal-regulated kinase (ERKs), c-Jun N-terminal kinase (JNKs), and the p38 MAPK pathway. The enhancement of WJMSC osteogenesis via ERK/MAPK pathways as demonstrated by qPCR analysis indicates the promise of SM oil for stem cell-based bone tissue engineering applications.