Influence of TiC and Ni addition on densification and mechanical properties of microwave sintered ZrB2 based composites

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
{"title":"Influence of TiC and Ni addition on densification and mechanical properties of microwave sintered ZrB2 based composites","authors":"","doi":"10.1016/j.matchar.2024.114481","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of TiC (10–30 vol%) and Ni (1–2 vol%) incorporation on densification, microstructural evolution and mechanical properties of microwave sintered ZrB<sub>2</sub> matrix-based composites were investigated in the present study. The findings reveal that TiC addition significantly improves the densification of ZrB<sub>2</sub> based composites, while the inclusion of Ni further improves densification of ZrB<sub>2</sub>–20 vol% TiC composite by reducing porosity and restricting the grain growth of both ZrB<sub>2</sub> and TiC phases. Additionally, the highest Vickers hardness of 22.25 ± 1.33 GPa and compressive strength of 1556.2 ± 40.17 MPa were obtained for the ZrB<sub>2</sub>–20 vol% TiC composite due to lower porosity, lower grain size and higher TiC diffusion in the ZrB<sub>2</sub> matrix. The fracture toughness enhanced with TiC and Ni addition and the maximum fracture toughness was observed as 6.66 ± 0.47 MPa.m<sup>0.5</sup> along with the highest critical energy release rate of 95.16 ± 11.68 J/m<sup>2</sup> for the ZrB<sub>2</sub>–20 vol% TiC-2 vol% Ni composite owing to the activation of toughening mechanisms like crack bridging, crack deflection and open pores as crack deflectors. Nanoindentation studies revealed significant improvements in elastic modulus and stiffness with the addition of TiC. The maximum elastic modulus and stiffness were observed as 482.91 ± 36.36 GPa and 237.24 ± 20.28 μN/nm for ZrB<sub>2</sub>–20 vol% TiC composite. The study highlights the potential of incorporating metallic additives with secondary reinforcements to enhance the mechanical properties and microstructures of ZrB<sub>2</sub> matrix, making them potential materials for high-temperature applications such as control surfaces, nose caps and leading edges of supersonic aircrafts.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008623","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of TiC (10–30 vol%) and Ni (1–2 vol%) incorporation on densification, microstructural evolution and mechanical properties of microwave sintered ZrB2 matrix-based composites were investigated in the present study. The findings reveal that TiC addition significantly improves the densification of ZrB2 based composites, while the inclusion of Ni further improves densification of ZrB2–20 vol% TiC composite by reducing porosity and restricting the grain growth of both ZrB2 and TiC phases. Additionally, the highest Vickers hardness of 22.25 ± 1.33 GPa and compressive strength of 1556.2 ± 40.17 MPa were obtained for the ZrB2–20 vol% TiC composite due to lower porosity, lower grain size and higher TiC diffusion in the ZrB2 matrix. The fracture toughness enhanced with TiC and Ni addition and the maximum fracture toughness was observed as 6.66 ± 0.47 MPa.m0.5 along with the highest critical energy release rate of 95.16 ± 11.68 J/m2 for the ZrB2–20 vol% TiC-2 vol% Ni composite owing to the activation of toughening mechanisms like crack bridging, crack deflection and open pores as crack deflectors. Nanoindentation studies revealed significant improvements in elastic modulus and stiffness with the addition of TiC. The maximum elastic modulus and stiffness were observed as 482.91 ± 36.36 GPa and 237.24 ± 20.28 μN/nm for ZrB2–20 vol% TiC composite. The study highlights the potential of incorporating metallic additives with secondary reinforcements to enhance the mechanical properties and microstructures of ZrB2 matrix, making them potential materials for high-temperature applications such as control surfaces, nose caps and leading edges of supersonic aircrafts.

Abstract Image

添加 TiC 和 Ni 对微波烧结 ZrB2 基复合材料致密化和机械性能的影响
本研究调查了 TiC(10-30 Vol%)和 Ni(1-2 Vol%)的加入对微波烧结 ZrB2 基复合材料的致密化、微观结构演变和机械性能的影响。研究结果表明,添加 TiC 能显著提高 ZrB2 基复合材料的致密性,而添加 Ni 则能通过降低孔隙率和限制 ZrB2 和 TiC 相的晶粒生长,进一步提高 ZrB2-20 Vol% TiC 复合材料的致密性。此外,ZrB2-20 vol% TiC 复合材料的维氏硬度最高,为 22.25 ± 1.33 GPa,抗压强度最高,为 1556.2 ± 40.17 MPa,这是由于孔隙率较低、晶粒尺寸较小以及 TiC 在 ZrB2 基体中的扩散较高。添加 TiC 和 Ni 后,ZrB2-20(体积分数)TiC-2(体积分数)Ni 复合材料的断裂韧性增强,最大断裂韧性为 6.66 ± 0.47 MPa.m0.5,临界能量释放率最高,为 95.16 ± 11.68 J/m2,这是由于激活了裂纹桥接、裂纹偏转和作为裂纹偏转器的开放孔隙等增韧机制。纳米压痕研究表明,添加 TiC 后,弹性模量和刚度显著提高。ZrB2-20 Vol% TiC 复合材料的最大弹性模量和刚度分别为 482.91 ± 36.36 GPa 和 237.24 ± 20.28 μN/nm。该研究强调了加入金属添加剂和二级增强剂以提高 ZrB2 基体的机械性能和微结构的潜力,使其成为超音速飞机控制面、机头盖和前缘等高温应用领域的潜在材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信