Chao Tian , Haiqing Sui , Youlin Chen , Wenxi Wang , Huijing Deng
{"title":"Estimating carbon emission reductions from China's “Zero-waste City” construction pilot program","authors":"Chao Tian , Haiqing Sui , Youlin Chen , Wenxi Wang , Huijing Deng","doi":"10.1016/j.resconrec.2024.107975","DOIUrl":null,"url":null,"abstract":"<div><div>Zero-waste strategies aim to reduce the growing generation of all types of solid waste streams. China has launched a “Zero-waste City” construction pilot program to mitigate pollution, lower carbon emissions, and promote a circular economy. However, a knowledge gap remains in terms of quantifying the carbon emission reduction performance when this program was implemented in the pilot cities. This study developed a methodology to account for the carbon emission reductions from the solid waste management processes, including source control, mid-end utilization, and end-of-line disposal in China's zero-waste pilot cities. Results indicated that the intensity of solid waste generation has been effectively controlled, the utilization level has been significantly improved, and the capacity for harmless disposal has been greatly enhanced, leading to substantial carbon emission reductions and climate benefits. Further decomposition of the driving forces using the Logarithmic Mean Divisia Index (LMDI) model revealed that emission intensity and treatment structure were the primary contributors to the carbon emission reductions. These findings could provide valuable insights for advancing China's in-depth construction of “Zero-waste City” projects and inform zero-waste management strategies in other countries.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"212 ","pages":"Article 107975"},"PeriodicalIF":11.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005664","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zero-waste strategies aim to reduce the growing generation of all types of solid waste streams. China has launched a “Zero-waste City” construction pilot program to mitigate pollution, lower carbon emissions, and promote a circular economy. However, a knowledge gap remains in terms of quantifying the carbon emission reduction performance when this program was implemented in the pilot cities. This study developed a methodology to account for the carbon emission reductions from the solid waste management processes, including source control, mid-end utilization, and end-of-line disposal in China's zero-waste pilot cities. Results indicated that the intensity of solid waste generation has been effectively controlled, the utilization level has been significantly improved, and the capacity for harmless disposal has been greatly enhanced, leading to substantial carbon emission reductions and climate benefits. Further decomposition of the driving forces using the Logarithmic Mean Divisia Index (LMDI) model revealed that emission intensity and treatment structure were the primary contributors to the carbon emission reductions. These findings could provide valuable insights for advancing China's in-depth construction of “Zero-waste City” projects and inform zero-waste management strategies in other countries.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.