Intersection of chordal graphs and some related partition problems

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
{"title":"Intersection of chordal graphs and some related partition problems","authors":"","doi":"10.1016/j.dam.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>The chordality of a graph is the minimum number of chordal graphs whose intersection is the graph. A result of Yannakakis’ from 1982 can be used to infer that for every fixed <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, deciding whether the chordality of a graph is at most <span><math><mi>k</mi></math></span> is NP-complete. We consider the problem of deciding whether the chordality of a graph is 2, or equivalently, deciding whether a given graph is the intersection of two chordal graphs. We prove that the problem is equivalent to a partition problem when one of the chordal graphs is a split graph and the other meets certain conditions. Using this we derive complexity results for a variety of problems, including deciding if a graph is the intersection of <span><math><mi>k</mi></math></span> split graphs, which is in P for <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> and NP-complete for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004360","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The chordality of a graph is the minimum number of chordal graphs whose intersection is the graph. A result of Yannakakis’ from 1982 can be used to infer that for every fixed k3, deciding whether the chordality of a graph is at most k is NP-complete. We consider the problem of deciding whether the chordality of a graph is 2, or equivalently, deciding whether a given graph is the intersection of two chordal graphs. We prove that the problem is equivalent to a partition problem when one of the chordal graphs is a split graph and the other meets certain conditions. Using this we derive complexity results for a variety of problems, including deciding if a graph is the intersection of k split graphs, which is in P for k=2 and NP-complete for k3.
弦图的相交和一些相关的分割问题
一个图的和弦度是其交集为该图的和弦图的最小数目。可以利用扬纳卡基斯(Yannakakis)1982 年的一个结果来推断,对于每个固定的 k≥3,判断一个图的和弦度是否最多为 k 是 NP-complete。我们考虑的问题是判定一个图的和弦度是否为 2,或者等价于判定一个给定的图是否是两个和弦图的交集。我们证明,当其中一个弦图是分裂图,而另一个满足特定条件时,该问题等同于分割问题。利用这一点,我们推导出了各种问题的复杂性结果,包括判定一个图是否是 k 个分裂图的交集,对于 k=2 的问题,该问题在 P 级,而对于 k≥3 的问题,该问题在 NP 级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信