{"title":"Miniature optical fiber photoacoustic spectroscopy gas sensor based on a 3D micro-printed planar-spiral spring optomechanical resonator","authors":"","doi":"10.1016/j.pacs.2024.100657","DOIUrl":null,"url":null,"abstract":"<div><div>Photoacoustic spectroscopy (PAS) gas sensors based on optomechanical resonators (OMRs) have garnered significant attention for ultrasensitive trace-gas detection. However, a major challenge lies in balancing small size with high performance when developing ultrasensitive miniaturized optomechanical resonant PAS (OMR-PAS) gas sensors for space-constrained applications. Here, we present a miniature optical fiber PAS gas sensor based on a planar-spiral spring OMR (PSS-OMR) that is <em>in situ</em> 3D micro-printed on the end-face of a fiber-optic ferrule. Experimental results demonstrate that mechanical vibrational resonance can enhance the sensor's acoustic sensitivity by over two orders of magnitude. Together with a 1.4 μL non-resonant photoacoustic cell, it can detect C<sub>2</sub>H<sub>2</sub> gas concentration at the 45-ppb level, and its response is very fast approximating 0.2 seconds. This optical fiber OMR-PAS gas sensor holds great promise for the detection or monitoring of rapidly varying trace gas in many applications ranging from production process control to industrial environmental surveillance.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000740","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photoacoustic spectroscopy (PAS) gas sensors based on optomechanical resonators (OMRs) have garnered significant attention for ultrasensitive trace-gas detection. However, a major challenge lies in balancing small size with high performance when developing ultrasensitive miniaturized optomechanical resonant PAS (OMR-PAS) gas sensors for space-constrained applications. Here, we present a miniature optical fiber PAS gas sensor based on a planar-spiral spring OMR (PSS-OMR) that is in situ 3D micro-printed on the end-face of a fiber-optic ferrule. Experimental results demonstrate that mechanical vibrational resonance can enhance the sensor's acoustic sensitivity by over two orders of magnitude. Together with a 1.4 μL non-resonant photoacoustic cell, it can detect C2H2 gas concentration at the 45-ppb level, and its response is very fast approximating 0.2 seconds. This optical fiber OMR-PAS gas sensor holds great promise for the detection or monitoring of rapidly varying trace gas in many applications ranging from production process control to industrial environmental surveillance.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.