{"title":"Large-time behavior of solutions to outflow problem of full compressible Navier–Stokes–Korteweg equations","authors":"Yeping Li, Heyu Liu, Rong Yin","doi":"10.1016/j.nonrwa.2024.104248","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we investigate the large-time behavior of the solution to outflow problem for full compressible Navier–Stokes–Korteweg equations in the one-dimensional half space. The full compressible Navier–Stokes–Korteweg equations model compressible fluids with viscosity, heat-conductivity and internal capillarity, and include the Korteweg stress effects into the dissipative structure of the hyperbolic–parabolic system and turn out to be more complicated than that in the simpler full compressible Navier–Stokes equations. Under some suitable assumptions of the far fields and the boundary values of the density, the velocity and the absolute temperature, the asymptotic stability of the boundary layer, the 3-rarefaction wave, and the superposition of the boundary layer and the 3-rarefaction wave are shown provided that the initial perturbation and the strength of the nonlinear wave are small. The proof is mainly based on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-energy method, some time-decay estimates of the smoothed rarefaction wave and the space-decay estimates of the boundary layer. This can be viewed as the first result about the stability of basic wave patterns for the outflow problem of the full compressible Navier–Stokes–Korteweg equations.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104248"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001871","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we investigate the large-time behavior of the solution to outflow problem for full compressible Navier–Stokes–Korteweg equations in the one-dimensional half space. The full compressible Navier–Stokes–Korteweg equations model compressible fluids with viscosity, heat-conductivity and internal capillarity, and include the Korteweg stress effects into the dissipative structure of the hyperbolic–parabolic system and turn out to be more complicated than that in the simpler full compressible Navier–Stokes equations. Under some suitable assumptions of the far fields and the boundary values of the density, the velocity and the absolute temperature, the asymptotic stability of the boundary layer, the 3-rarefaction wave, and the superposition of the boundary layer and the 3-rarefaction wave are shown provided that the initial perturbation and the strength of the nonlinear wave are small. The proof is mainly based on -energy method, some time-decay estimates of the smoothed rarefaction wave and the space-decay estimates of the boundary layer. This can be viewed as the first result about the stability of basic wave patterns for the outflow problem of the full compressible Navier–Stokes–Korteweg equations.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.