{"title":"Yb3+-activated phosphate glasses melted with MnCO3 for solar spectral conversion","authors":"José A. Jiménez, Richard Amesimenu","doi":"10.1016/j.materresbull.2024.113164","DOIUrl":null,"url":null,"abstract":"<div><div>This paper reports on the physical and optical properties of phosphate glasses containing red-emitting Mn<sup>2+</sup> and near-infrared (NIR)-emitting Yb<sup>3+</sup> ions of interest for solar spectral conversion. The glasses were prepared by melting with 50P<sub>2</sub>O<sub>5</sub>-(48 – <em>x</em>)BaCO<sub>3</sub>–2Yb<sub>2</sub>O<sub>3</sub>-<em>x</em>MnCO<sub>3</sub> (<em>x</em> = 0, 1, 2, 3, 4 mol%) formulas, and characterized by X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), UV–Vis-NIR spectrophotometry, and photoluminescence (PL) spectroscopy. The glasses were X-ray amorphous with the various characteristic features of phosphate glasses being evident in the FT-IR spectra. The thermal properties of the co-doped glasses assessed by DSC appeared similar despite the variation in manganese content. The optical absorption spectra supported the occurrence of Mn<sup>2+</sup> ions while Mn<sup>3+</sup> was detected at high MnCO<sub>3</sub> content. The NIR absorption due to Yb<sup>3+</sup> ions was nonetheless consistent with the fixed Yb<sub>2</sub>O<sub>3</sub> content. The PL evaluation showed that sensitized Yb<sup>3+</sup>PL was attained under Mn<sup>2+</sup>excitation at 410 nm where the NIR emission increased with MnCO<sub>3</sub> content in connection with Mn<sup>2+</sup>→ Yb<sup>3+</sup> energy transfer. However, the NIR emission output realized with 4 mol% MnCO<sub>3</sub> was just marginally higher than the obtained with 3 mol% MnCO<sub>3</sub>. On the other hand, the red Mn<sup>2+</sup>emission was highest for 3 mol% MnCO<sub>3</sub>. Thus, considering the optimized red and NIR emissions while minimizing absorption by Mn<sup>3+</sup>, the Yb-containing glass melted with 3 mol% MnCO<sub>3</sub> was put in perspective with the concept of solar spectral conversion.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113164"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082400494X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports on the physical and optical properties of phosphate glasses containing red-emitting Mn2+ and near-infrared (NIR)-emitting Yb3+ ions of interest for solar spectral conversion. The glasses were prepared by melting with 50P2O5-(48 – x)BaCO3–2Yb2O3-xMnCO3 (x = 0, 1, 2, 3, 4 mol%) formulas, and characterized by X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), UV–Vis-NIR spectrophotometry, and photoluminescence (PL) spectroscopy. The glasses were X-ray amorphous with the various characteristic features of phosphate glasses being evident in the FT-IR spectra. The thermal properties of the co-doped glasses assessed by DSC appeared similar despite the variation in manganese content. The optical absorption spectra supported the occurrence of Mn2+ ions while Mn3+ was detected at high MnCO3 content. The NIR absorption due to Yb3+ ions was nonetheless consistent with the fixed Yb2O3 content. The PL evaluation showed that sensitized Yb3+PL was attained under Mn2+excitation at 410 nm where the NIR emission increased with MnCO3 content in connection with Mn2+→ Yb3+ energy transfer. However, the NIR emission output realized with 4 mol% MnCO3 was just marginally higher than the obtained with 3 mol% MnCO3. On the other hand, the red Mn2+emission was highest for 3 mol% MnCO3. Thus, considering the optimized red and NIR emissions while minimizing absorption by Mn3+, the Yb-containing glass melted with 3 mol% MnCO3 was put in perspective with the concept of solar spectral conversion.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.