Accumulation of oxygen interstitial-vacancy pairs under irradiation of corundum single crystals with energetic xenon ions

IF 1.6 3区 物理与天体物理 Q2 NUCLEAR SCIENCE & TECHNOLOGY
Guldar Baubekova , Ruslan Assylbayev , Eduard Feldbach , Aleksei Krasnikov , Irina Kudryavtseva , Alise Podelinska , Viktor Seeman , Evgeni Shablonin , Evgeni Vasil'chenko , Aleksandr Lushchik
{"title":"Accumulation of oxygen interstitial-vacancy pairs under irradiation of corundum single crystals with energetic xenon ions","authors":"Guldar Baubekova ,&nbsp;Ruslan Assylbayev ,&nbsp;Eduard Feldbach ,&nbsp;Aleksei Krasnikov ,&nbsp;Irina Kudryavtseva ,&nbsp;Alise Podelinska ,&nbsp;Viktor Seeman ,&nbsp;Evgeni Shablonin ,&nbsp;Evgeni Vasil'chenko ,&nbsp;Aleksandr Lushchik","doi":"10.1016/j.radmeas.2024.107324","DOIUrl":null,"url":null,"abstract":"<div><div>Single crystals of α-Al<sub>2</sub>O<sub>3</sub> with broad sides oriented perpendicular to the <em>c</em> crystal axis have been irradiated by 231-MeV xenon ions with fluence varying from 5 × 10<sup>11</sup> to 10<sup>14</sup> ions/cm<sup>2</sup>. The spectra of radiation-induced optical absorption (absorption of a pristine crystal is subtracted) have been decomposed into Gaussians serving as a measure of oxygen-related Frenkel defects (interstitial-vacancy pairs). The concentration of all structural defects considered – vacancy-type <em>F</em> and <em>F</em><sup>+</sup> centers as well as oxygen interstitials – continuously increases with ion fluence. Therefore, radiation-induced origin of elementary absorption bands at 5.6 and 6.6 eV tentatively ascribed earlier to charged and neutral oxygen interstitials has been proved for the first time. The concentrations of charged interstitials (in the form of superoxide ions) have been directly determined by the EPR method. The evolution of cathodoluminescence bands typical of self-trapped excitons (VUV band at 7.6 eV) and <em>F</em>-type defects (bands peaked around 3.0 and 3.8 eV) with the rise of Xe-ion-irradiation fluence has been measured and analyzed.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"179 ","pages":"Article 107324"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002725","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single crystals of α-Al2O3 with broad sides oriented perpendicular to the c crystal axis have been irradiated by 231-MeV xenon ions with fluence varying from 5 × 1011 to 1014 ions/cm2. The spectra of radiation-induced optical absorption (absorption of a pristine crystal is subtracted) have been decomposed into Gaussians serving as a measure of oxygen-related Frenkel defects (interstitial-vacancy pairs). The concentration of all structural defects considered – vacancy-type F and F+ centers as well as oxygen interstitials – continuously increases with ion fluence. Therefore, radiation-induced origin of elementary absorption bands at 5.6 and 6.6 eV tentatively ascribed earlier to charged and neutral oxygen interstitials has been proved for the first time. The concentrations of charged interstitials (in the form of superoxide ions) have been directly determined by the EPR method. The evolution of cathodoluminescence bands typical of self-trapped excitons (VUV band at 7.6 eV) and F-type defects (bands peaked around 3.0 and 3.8 eV) with the rise of Xe-ion-irradiation fluence has been measured and analyzed.
用高能氙离子辐照刚玉单晶时氧间隙空位对的积累
α-Al2O3单晶体的宽边方向垂直于晶体的c轴,受到231-MeV氙离子的辐照,离子流量从5×1011到1014个/cm2不等。辐射诱导的光吸收光谱(原始晶体的吸收被减去)被分解成高斯谱,作为与氧有关的弗伦克尔缺陷(间隙空位对)的测量值。所考虑的所有结构缺陷(空位型 F 和 F+ 中心以及氧间隙)的浓度都会随着离子通量的增加而不断增加。因此,之前暂定为带电和中性氧间隙的 5.6 和 6.6 eV 基本吸收带在辐射诱导下的起源首次得到了证实。带电间隙的浓度(以超氧离子的形式)已通过 EPR 方法直接测定。测量并分析了自俘获激子(7.6 eV 处的紫外波段)和 F 型缺陷(3.0 eV 和 3.8 eV 附近的波段峰值)的阴极发光带随 Xe 离子辐照通量的增加而发生的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation Measurements
Radiation Measurements 工程技术-核科学技术
CiteScore
4.10
自引率
20.00%
发文量
116
审稿时长
48 days
期刊介绍: The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal. Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信