DNE-YOLO: A method for apple fruit detection in Diverse Natural Environments

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Haitao Wu , Xiaotian Mo , Sijian Wen , Kanglei Wu , Yu Ye , Yongmei Wang , Youhua Zhang
{"title":"DNE-YOLO: A method for apple fruit detection in Diverse Natural Environments","authors":"Haitao Wu ,&nbsp;Xiaotian Mo ,&nbsp;Sijian Wen ,&nbsp;Kanglei Wu ,&nbsp;Yu Ye ,&nbsp;Yongmei Wang ,&nbsp;Youhua Zhang","doi":"10.1016/j.jksuci.2024.102220","DOIUrl":null,"url":null,"abstract":"<div><div>The apple industry, recognized as a pivotal sector in agriculture, increasingly emphasizes the mechanization and intelligent advancement of picking technology. This study innovatively applies a mist simulation algorithm to apple image generation, constructing a dataset of apple images under mixed sunny, cloudy, drizzling and foggy weather conditions called DNE-APPLE. It introduces a lightweight and efficient target detection network called DNE-YOLO. Building upon the YOLOv8 base model, DNE-YOLO incorporates the CBAM attention mechanism and CARAFE up-sampling operator to enhance the focus on apples. Additionally, it utilizes GSConv and the dynamic non-monotonic focusing mechanism loss function WIOU to reduce model parameters and decrease reliance on dataset quality. Extensive experimental results underscore the efficacy of the DNE-YOLO model, which achieves a detection accuracy (precision) of 90.7%, a recall of 88.9%, a mean accuracy (mAP50) of 94.3%, a computational complexity (GFLOPs) of 25.4G, and a parameter count of 10.46M across various environmentally diverse datasets. Compared to YOLOv8, it exhibits superior detection accuracy and robustness in sunny, drizzly, cloudy, and misty environments, making it especially suitable for practical applications such as apple picking for agricultural robots. The code for this model is open source at <span><span>https://github.com/wuhaitao2178827/DNE-YOLO</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102220"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824003094","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The apple industry, recognized as a pivotal sector in agriculture, increasingly emphasizes the mechanization and intelligent advancement of picking technology. This study innovatively applies a mist simulation algorithm to apple image generation, constructing a dataset of apple images under mixed sunny, cloudy, drizzling and foggy weather conditions called DNE-APPLE. It introduces a lightweight and efficient target detection network called DNE-YOLO. Building upon the YOLOv8 base model, DNE-YOLO incorporates the CBAM attention mechanism and CARAFE up-sampling operator to enhance the focus on apples. Additionally, it utilizes GSConv and the dynamic non-monotonic focusing mechanism loss function WIOU to reduce model parameters and decrease reliance on dataset quality. Extensive experimental results underscore the efficacy of the DNE-YOLO model, which achieves a detection accuracy (precision) of 90.7%, a recall of 88.9%, a mean accuracy (mAP50) of 94.3%, a computational complexity (GFLOPs) of 25.4G, and a parameter count of 10.46M across various environmentally diverse datasets. Compared to YOLOv8, it exhibits superior detection accuracy and robustness in sunny, drizzly, cloudy, and misty environments, making it especially suitable for practical applications such as apple picking for agricultural robots. The code for this model is open source at https://github.com/wuhaitao2178827/DNE-YOLO.
DNE-YOLO:在多样化自然环境中检测苹果果实的方法
苹果产业作为农业中举足轻重的行业,越来越重视采摘技术的机械化和智能化。本研究创新性地将雾气模拟算法应用于苹果图像生成,构建了一个名为 DNE-APPLE 的晴天、多云、小雨和大雾混合天气条件下的苹果图像数据集。它引入了一种名为 DNE-YOLO 的轻量级高效目标检测网络。在 YOLOv8 基本模型的基础上,DNE-YOLO 加入了 CBAM 注意机制和 CARAFE 上采样算子,以加强对苹果的关注。此外,它还利用 GSConv 和动态非单调聚焦机制损失函数 WIOU 来减少模型参数,降低对数据集质量的依赖。广泛的实验结果证明了 DNE-YOLO 模型的有效性,它在各种不同环境的数据集上实现了 90.7% 的检测准确率(精确度)、88.9% 的召回率、94.3% 的平均准确率(mAP50)、25.4G 的计算复杂度(GFLOPs)和 10.46M 的参数数。与 YOLOv8 相比,它在晴天、小雨、多云和雾霾环境中都表现出了更高的检测精度和鲁棒性,因此特别适合农业机器人采摘苹果等实际应用。该模型的代码开源于 https://github.com/wuhaitao2178827/DNE-YOLO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信