R. Mitra, M. Sieger, V. Galindo, T. Vogt, F. Stefani, S. Eckert, T. Wondrak
{"title":"Design of a Contactless Inductive Flow Tomography system for a large Rayleigh–Bénard convection cell with aspect ratio Γ=0.5","authors":"R. Mitra, M. Sieger, V. Galindo, T. Vogt, F. Stefani, S. Eckert, T. Wondrak","doi":"10.1016/j.flowmeasinst.2024.102709","DOIUrl":null,"url":null,"abstract":"<div><div>Contactless Inductive Flow Tomography (CIFT) is a flow measurement technique that is able to reconstruct the time-dependent three-dimensional velocity field in electrically conducting fluids, e.g., liquid metals, from magnetic field measurements. The paper describes the design of a specific CIFT measurement set-up for flow studies in liquid metal Rayleigh–Bénard convection (RBC) in a large cylinder of aspect ratio (diameter/height) of <span><math><mrow><mi>Γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> filled with the ternary alloy GaInSn as model fluid. An optimized configuration for the CIFT excitation system and magnetic field sensor layout under consideration of the specific requirements for the application in turbulent RBC is determined by numerical simulations. The new experimental CIFT-RBC system resulting from the design process is constructed and a preliminary experiment at a Rayleigh number of <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>13</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span> and a Prandtl number of <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>03</mn></mrow></math></span> is performed and evaluated.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102709"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001894","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Contactless Inductive Flow Tomography (CIFT) is a flow measurement technique that is able to reconstruct the time-dependent three-dimensional velocity field in electrically conducting fluids, e.g., liquid metals, from magnetic field measurements. The paper describes the design of a specific CIFT measurement set-up for flow studies in liquid metal Rayleigh–Bénard convection (RBC) in a large cylinder of aspect ratio (diameter/height) of filled with the ternary alloy GaInSn as model fluid. An optimized configuration for the CIFT excitation system and magnetic field sensor layout under consideration of the specific requirements for the application in turbulent RBC is determined by numerical simulations. The new experimental CIFT-RBC system resulting from the design process is constructed and a preliminary experiment at a Rayleigh number of and a Prandtl number of is performed and evaluated.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.