Sharp existence results on fractional elliptic equation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Anmin Mao, Changchang Yan, Xiaoxu Zhang
{"title":"Sharp existence results on fractional elliptic equation","authors":"Anmin Mao,&nbsp;Changchang Yan,&nbsp;Xiaoxu Zhang","doi":"10.1016/j.aml.2024.109350","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the following mass-constrained elliptic problem <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mi>i</mi><mi>n</mi><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><mi>c</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> and <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> is fractional Laplacian. We get a sharp description of the existence and non-existence of the global minimizer on the mass constraint, which is called energy ground state. More specifically, we show that there exists a constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that there exists an energy ground state if <span><math><mrow><mi>c</mi><mo>&gt;</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and there exists no energy ground state if <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>c</mi><mo>&lt;</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>. Our results extends some related works.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109350"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003707","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the following mass-constrained elliptic problem (Δ)su+V(x)u+λu=f(x,u)inRN,RN|u(x)|2dx=c,with 0<s<1 and (Δ)s is fractional Laplacian. We get a sharp description of the existence and non-existence of the global minimizer on the mass constraint, which is called energy ground state. More specifically, we show that there exists a constant c0 such that there exists an energy ground state if c>c0 and there exists no energy ground state if 0<c<c0. Our results extends some related works.
分数椭圆方程的尖锐存在结果
我们考虑以下有质量约束的椭圆问题 (-Δ)su+V(x)u+λu=f(x,u)inRN,∫RN|u(x)|2dx=c, 0<s<1 且 (-Δ)s 为分数拉普拉奇。我们得到了关于质量约束的全局最小化(即能量基态)存在与不存在的清晰描述。更具体地说,我们证明了存在一个常数 c0,如果 c>c0 则存在能量基态,如果 0<c<c0 则不存在能量基态。我们的结果扩展了一些相关工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信