Terbium metal–organic frameworks for the efficient removal of tartrazine food dye from aquatic systems: Thermodynamics, kinetics, isotherm, and box-behnken design optimization
Omaymah Alaysuy , Abdullah Ali A. Sari , Albandary Almahri , Kamelah S. Alrashdi , Ibrahim S.S. Alatawi , Meshari M. Aljohani , Ali Sayqal , Nashwa M. El-Metwaly
{"title":"Terbium metal–organic frameworks for the efficient removal of tartrazine food dye from aquatic systems: Thermodynamics, kinetics, isotherm, and box-behnken design optimization","authors":"Omaymah Alaysuy , Abdullah Ali A. Sari , Albandary Almahri , Kamelah S. Alrashdi , Ibrahim S.S. Alatawi , Meshari M. Aljohani , Ali Sayqal , Nashwa M. El-Metwaly","doi":"10.1016/j.arabjc.2024.106035","DOIUrl":null,"url":null,"abstract":"<div><div>The elimination and removal of the yellow food coloring tartrazine dye E-102 (TZ) from aqueous solutions was conducted using stacked nanorods made of Terbium metal–organic frameworks (Tb-MOF). The adsorbent was assessed using various methods including FTIR, BET, XRD, XPS, SEM, and TEM. The results showed that the surface area decreased from 1123.07 to 762.8 m<sup>2</sup>.g<sup>−1</sup>, the pore volume reduced from 4.02 to 2.6 cc/g, and the pore size decreased from 7.8 to 3.2 nm after adsorption. The reduction in surface area, pore volume, and pore size post-TZ dye adsorption indicates that some of the adsorption mechanisms took place through the pores of the adsorbent. Examined the impact of temperature, pH, initial dye concentration, and contact time on the removal of TZ dye. The adsorption of TZ was found to conform to the Langmuir isotherm and pseudo-second-order kinetic model. The maximum adsorption capacity for TZ was determined to be 817.63 mg/g. The resulting pH<sub>zpc</sub> value of 5.36 indicates that adsorption of anionic dyes, such as TZ dye, is advantageous at pH levels below 5.36. Moreover, the adsorption process exhibited an adsorption energy of 23.78 kJ/mol, suggesting the presence of a chemisorption mechanism. The thermodynamic parameters calculated indicate that the adsorption processes are both spontaneous and endothermic. It is advisable to utilize the Tb-MOF adsorbent for a total of five cycles, as the adsorbent’s ability to regenerate suggests that treating industrial wastewater can be achieved easily and efficiently. The efficiency of the adsorption process was enhanced through optimization using the Box-Behnken Design (BBD).</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"17 12","pages":"Article 106035"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878535224004374","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The elimination and removal of the yellow food coloring tartrazine dye E-102 (TZ) from aqueous solutions was conducted using stacked nanorods made of Terbium metal–organic frameworks (Tb-MOF). The adsorbent was assessed using various methods including FTIR, BET, XRD, XPS, SEM, and TEM. The results showed that the surface area decreased from 1123.07 to 762.8 m2.g−1, the pore volume reduced from 4.02 to 2.6 cc/g, and the pore size decreased from 7.8 to 3.2 nm after adsorption. The reduction in surface area, pore volume, and pore size post-TZ dye adsorption indicates that some of the adsorption mechanisms took place through the pores of the adsorbent. Examined the impact of temperature, pH, initial dye concentration, and contact time on the removal of TZ dye. The adsorption of TZ was found to conform to the Langmuir isotherm and pseudo-second-order kinetic model. The maximum adsorption capacity for TZ was determined to be 817.63 mg/g. The resulting pHzpc value of 5.36 indicates that adsorption of anionic dyes, such as TZ dye, is advantageous at pH levels below 5.36. Moreover, the adsorption process exhibited an adsorption energy of 23.78 kJ/mol, suggesting the presence of a chemisorption mechanism. The thermodynamic parameters calculated indicate that the adsorption processes are both spontaneous and endothermic. It is advisable to utilize the Tb-MOF adsorbent for a total of five cycles, as the adsorbent’s ability to regenerate suggests that treating industrial wastewater can be achieved easily and efficiently. The efficiency of the adsorption process was enhanced through optimization using the Box-Behnken Design (BBD).
期刊介绍:
The Arabian Journal of Chemistry is an English language, peer-reviewed scholarly publication in the area of chemistry. The Arabian Journal of Chemistry publishes original papers, reviews and short reports on, but not limited to: inorganic, physical, organic, analytical and biochemistry.
The Arabian Journal of Chemistry is issued by the Arab Union of Chemists and is published by King Saud University together with the Saudi Chemical Society in collaboration with Elsevier and is edited by an international group of eminent researchers.