Yunong Li , Boyang He , Huiyi Zhang , Jingyuan Liu , Sufang Li , Hailang Wang , Hao Peng , Yongtai Wang , Jun Dai , Yanting Wang , Liangcai Peng , Heng Kang
{"title":"Enriched extensin and cellulose for non-collapse biochar assembly to maximize carbon porosity and dye adsorption with high bioethanol production","authors":"Yunong Li , Boyang He , Huiyi Zhang , Jingyuan Liu , Sufang Li , Hailang Wang , Hao Peng , Yongtai Wang , Jun Dai , Yanting Wang , Liangcai Peng , Heng Kang","doi":"10.1016/j.indcrop.2024.119924","DOIUrl":null,"url":null,"abstract":"<div><div>Although extensin is a typical wall protein functional for plant cell wall construction and biomass production, its regulation on lignocellulose conversion into biofuels and bioproducts remains elusive. By collecting two extensin-overproduced rice straws (<em>OsEXTLs</em>), this study determined their cellulose levels significantly increased by 10 % along with soluble sugars and starch accumulation raised by 1–3.6 folds. After mild 0.5 % NaOH pretreatment, the <em>OsEXTLs</em> straws showed relatively enhanced biochemical conversion into total bioethanol production. Further under classic thermal-chemical conversion with the <em>OsEXTLs</em> enzyme-undigested lignocelluloses, this study generated the non-collapse biochar with more active chemical groups and the highest porosity, which caused mostly raised adsorption capacities with methylene blue (1162 mg/g) and Congo red (2714 mg/g) as a comparison with the previously-reported ones. Therefore, we proposed a mechanism model to illuminate how the extensin-enriched lignocellulose favors for higher-yield bioethanol conversion and better-performance biochar assembly, providing a novel strategy for desirable lignocellulose modification and effective biomass process.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024019010","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Although extensin is a typical wall protein functional for plant cell wall construction and biomass production, its regulation on lignocellulose conversion into biofuels and bioproducts remains elusive. By collecting two extensin-overproduced rice straws (OsEXTLs), this study determined their cellulose levels significantly increased by 10 % along with soluble sugars and starch accumulation raised by 1–3.6 folds. After mild 0.5 % NaOH pretreatment, the OsEXTLs straws showed relatively enhanced biochemical conversion into total bioethanol production. Further under classic thermal-chemical conversion with the OsEXTLs enzyme-undigested lignocelluloses, this study generated the non-collapse biochar with more active chemical groups and the highest porosity, which caused mostly raised adsorption capacities with methylene blue (1162 mg/g) and Congo red (2714 mg/g) as a comparison with the previously-reported ones. Therefore, we proposed a mechanism model to illuminate how the extensin-enriched lignocellulose favors for higher-yield bioethanol conversion and better-performance biochar assembly, providing a novel strategy for desirable lignocellulose modification and effective biomass process.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.