Xiaolong Si , Yanchen Song , Guangda Zhang , Qiang Han , Xiuli Du , Bin Liu
{"title":"Mechanical model analysis of column-footing joints with combined socket-corrugated pipe connection","authors":"Xiaolong Si , Yanchen Song , Guangda Zhang , Qiang Han , Xiuli Du , Bin Liu","doi":"10.1016/j.compstruct.2024.118666","DOIUrl":null,"url":null,"abstract":"<div><div>The socket connection method is widely used in precast column, particularly in seismic regions. However, reducing the socket-depth to lower costs may lead to shear failure in the socketed part of the columns. To address this issue and achieve cost objectives, a new approach combines shallow sockets with corrugated pipes for column-footing joints. Comparative tests were conducted to investigate failure in columns with socket-corrugated pipe connections (SCPC), shallow sockets (SSC), and cast-in-place (CIP). Furthermore, finite element models were employed to validate the experimental and simplified model results. The findings suggest potential shear failure in shallow socket connections, which can be mitigated by using the combined socket-corrugated pipe method that alters force transmission paths. As the axial load ratio increases, both the ultimate lateral load capacity of the specimen and the local stresses at the column base increase. In addition, the ultimate lateral load capacity of the column and the stress of the connection reinforcement are increased by increasing the strength of the longitudinal reinforcement, consequently amplifying the extent of joint area damage. Finally, a simplified strut-and-tie model of the SCPC, validated against numerical and experimental data, accurately represents force paths, ultimate lateral load capacity and failure modes in socket joints.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118666"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007943","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The socket connection method is widely used in precast column, particularly in seismic regions. However, reducing the socket-depth to lower costs may lead to shear failure in the socketed part of the columns. To address this issue and achieve cost objectives, a new approach combines shallow sockets with corrugated pipes for column-footing joints. Comparative tests were conducted to investigate failure in columns with socket-corrugated pipe connections (SCPC), shallow sockets (SSC), and cast-in-place (CIP). Furthermore, finite element models were employed to validate the experimental and simplified model results. The findings suggest potential shear failure in shallow socket connections, which can be mitigated by using the combined socket-corrugated pipe method that alters force transmission paths. As the axial load ratio increases, both the ultimate lateral load capacity of the specimen and the local stresses at the column base increase. In addition, the ultimate lateral load capacity of the column and the stress of the connection reinforcement are increased by increasing the strength of the longitudinal reinforcement, consequently amplifying the extent of joint area damage. Finally, a simplified strut-and-tie model of the SCPC, validated against numerical and experimental data, accurately represents force paths, ultimate lateral load capacity and failure modes in socket joints.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.