{"title":"Investigation of the effect of the flow rate of coolant on the kinetics of carbon dioxide hydrate growth using sigmoidal growth model","authors":"Shaghayegh Jahangiri, Fashad Varaminian","doi":"10.1016/j.jcrysgro.2024.127960","DOIUrl":null,"url":null,"abstract":"<div><div>Relaxation time plays a crucial role in studying reaction kinetics and other processes. This study addresses the importance of relaxation time and suggests methods to minimize it. In this article, we adjust the relaxation time by extracting heat from the hydrate formation process through variations in the flow rate of the cooling fluid. It has been demonstrated that heat transfer plays a dominant role in this process. The kinetics of carbon dioxide hydrate growth were evaluated by increasing the flow rate of cooling fluid using modified sigmoidal growth curve equations, including Logistics and Gompertz. It was conducted a nonlinear least-squares regression analysis to fit sigmoidal functions to the cumulative formation curves of hydrate generated from gas uptake in the static reactor over time. The percentage of error between A<sub>real</sub> and A<sub>model</sub> shows that the Gompertz model with Q = 14.59 Lit/min at T = 276 K and Q = 20.25 Lit/min at T = 277 K is the best model for predicting the maximum consumption capacity of CO<sub>2</sub>. The results also showed that increasing the cooling fluid’s flow rate reduces relaxation time at any temperature. Moreover, increasing the flow rate of the cooling fluid decreased the average relaxation time by 2 % to 60 % at T = 276 K and by 7 % to 22 % at T = 277 K compared to the lowest investigated flow rate. Additionally, reducing the experimental temperature while keeping the flow rate of the cooling fluid constant led to a reduction in the relaxation time.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"649 ","pages":"Article 127960"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824003981","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Relaxation time plays a crucial role in studying reaction kinetics and other processes. This study addresses the importance of relaxation time and suggests methods to minimize it. In this article, we adjust the relaxation time by extracting heat from the hydrate formation process through variations in the flow rate of the cooling fluid. It has been demonstrated that heat transfer plays a dominant role in this process. The kinetics of carbon dioxide hydrate growth were evaluated by increasing the flow rate of cooling fluid using modified sigmoidal growth curve equations, including Logistics and Gompertz. It was conducted a nonlinear least-squares regression analysis to fit sigmoidal functions to the cumulative formation curves of hydrate generated from gas uptake in the static reactor over time. The percentage of error between Areal and Amodel shows that the Gompertz model with Q = 14.59 Lit/min at T = 276 K and Q = 20.25 Lit/min at T = 277 K is the best model for predicting the maximum consumption capacity of CO2. The results also showed that increasing the cooling fluid’s flow rate reduces relaxation time at any temperature. Moreover, increasing the flow rate of the cooling fluid decreased the average relaxation time by 2 % to 60 % at T = 276 K and by 7 % to 22 % at T = 277 K compared to the lowest investigated flow rate. Additionally, reducing the experimental temperature while keeping the flow rate of the cooling fluid constant led to a reduction in the relaxation time.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.