Gabrielle A.R. da Silva , Thamires M. de L.O. da Silva , João Paulo da S.Q. Menezes , Elizabeth Cristina T. Veloso , Gizele C. Fontes-Sant’Ana , Noemi Raquel C. Huaman , Rodrigo Brackmann , Marta A.P. Langone
{"title":"Ethyl esters synthesis catalyzed by lipase B from Candida antarctica immobilized on NiFe2O4 magnetic nanoparticles","authors":"Gabrielle A.R. da Silva , Thamires M. de L.O. da Silva , João Paulo da S.Q. Menezes , Elizabeth Cristina T. Veloso , Gizele C. Fontes-Sant’Ana , Noemi Raquel C. Huaman , Rodrigo Brackmann , Marta A.P. Langone","doi":"10.1016/j.cattod.2024.115099","DOIUrl":null,"url":null,"abstract":"<div><div>The development of heterogeneous biocatalysts allows the expansion of the application of enzymes in different industrial processes, favoring the establishment of clean technologies. This work investigates the capacity of nickel ferrite magnetic nanoparticles (NiFe<sub>2</sub>O<sub>4</sub>) as a support for lipase B from <em>Candida antarctica</em> (CalB) immobilization. The adsorption capacity of the support revealed a maximum value of 15 mg<sub>protein</sub>/g<sub>support,</sub> according to the Langmuir isotherm model. Efficiency immobilization by physical adsorption was low (21.3 %), and CalB was covalently immobilized after functionalization of NiFe<sub>2</sub>O<sub>4</sub> with APTMS (3-aminopropyl trimethoxysilane) and activation with glutaraldehyde (GA), showing higher immobilization yield (62.9 %). The spinel ferrite NiFe<sub>2</sub>O<sub>4</sub> was characterized by many physicochemical analyses. The enzyme derivatives obtained (NiFe<sub>2</sub>O<sub>4</sub>-CalB and NiFe<sub>2</sub>O<sub>4</sub>-APTMS-GA-CalB) were evaluated in the synthesis of alkyl esters. Despite no production was observed in the transesterification reactions, esterification led to 37.3 ± 1.0 % and 62.1 ± 0.2 % of oleic acid conversions using NiFe<sub>2</sub>O<sub>4</sub>-APTMS-GA-CalB and NiFe<sub>2</sub>O<sub>4</sub>-CalB, respectively. After 4 cycles, NiFe<sub>2</sub>O<sub>4</sub>-CalB maintained 92 % of its initial activity. Nickel ferrite magnetic nanoparticles form an efficient heterogeneous catalyst with lipase, which could be used to remove the content of free fatty acids (FFAs), like oleic acid, present in cheap raw materials to produce biodiesel.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"445 ","pages":"Article 115099"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124005935","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The development of heterogeneous biocatalysts allows the expansion of the application of enzymes in different industrial processes, favoring the establishment of clean technologies. This work investigates the capacity of nickel ferrite magnetic nanoparticles (NiFe2O4) as a support for lipase B from Candida antarctica (CalB) immobilization. The adsorption capacity of the support revealed a maximum value of 15 mgprotein/gsupport, according to the Langmuir isotherm model. Efficiency immobilization by physical adsorption was low (21.3 %), and CalB was covalently immobilized after functionalization of NiFe2O4 with APTMS (3-aminopropyl trimethoxysilane) and activation with glutaraldehyde (GA), showing higher immobilization yield (62.9 %). The spinel ferrite NiFe2O4 was characterized by many physicochemical analyses. The enzyme derivatives obtained (NiFe2O4-CalB and NiFe2O4-APTMS-GA-CalB) were evaluated in the synthesis of alkyl esters. Despite no production was observed in the transesterification reactions, esterification led to 37.3 ± 1.0 % and 62.1 ± 0.2 % of oleic acid conversions using NiFe2O4-APTMS-GA-CalB and NiFe2O4-CalB, respectively. After 4 cycles, NiFe2O4-CalB maintained 92 % of its initial activity. Nickel ferrite magnetic nanoparticles form an efficient heterogeneous catalyst with lipase, which could be used to remove the content of free fatty acids (FFAs), like oleic acid, present in cheap raw materials to produce biodiesel.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.