A Ni-based metal hydroxide-organic framework mesh membrane with ultra-durable underwater superoleophobicity for high-efficient oil/water separation

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Huan Zeng , Caiqin Wu , Jialing Zhou , Chenling Yao , Guilong Li , Chuanghui Yu , Jian Wang , Hua Dong , Zhe Xu , Lei Jiang
{"title":"A Ni-based metal hydroxide-organic framework mesh membrane with ultra-durable underwater superoleophobicity for high-efficient oil/water separation","authors":"Huan Zeng ,&nbsp;Caiqin Wu ,&nbsp;Jialing Zhou ,&nbsp;Chenling Yao ,&nbsp;Guilong Li ,&nbsp;Chuanghui Yu ,&nbsp;Jian Wang ,&nbsp;Hua Dong ,&nbsp;Zhe Xu ,&nbsp;Lei Jiang","doi":"10.1016/j.memsci.2024.123447","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, MOF-based oil/water separation membranes with superwettability have attracted great attention in the treatment of oily wastewater due to their uniform chemical composition and intrinsic porosity. However, the real separation performance is still limited by broking the metal-ligand bonds of conventional MOF materials in extreme chemical and mechanical environments, such as acidic, alkaline, saline, organic, and abrasion. Herein, we provide a metal hydroxide-organic framework (MHOF) composite mesh membrane for high-efficient oil/water separation by simply growing Ni<sub>2</sub>(OH)<sub>2</sub> clusters onto a polydopamine (PDA)-modified stainless-steel mesh (SSM). Compared with conventional MOF materials, our membrane possesses ultra-durable underwater superoleophobicity by taking advantages of its strong chemical bridging, rich hydrophilic groups, and rough surface morphology, which enables a 1 μL water droplet to spread to 0° contact angle within &lt;100 ms and also obtains an ultra-low underwater oil adhesion force ∼1.9 μN. Separation of both oil/water mixtures and oil-in-water emulsions can be achieved by this Ni-based MHOF mesh membrane with high separation efficiency &gt;99.7 % and large permeate flux &gt;57,000 L m<sup>−2</sup> h<sup>−1</sup>. Furthermore, the Ni<sub>2</sub>(OH)<sub>2</sub>@PDA-SSM mesh membrane exhibits excellent anti-oil-fouling, chemical stability and abrasion resistance, which shows a promising candidate for practical applications. This study provides a rational strategy to construct high-performance MHOF membranes for oil/water separation.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037673882401041X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, MOF-based oil/water separation membranes with superwettability have attracted great attention in the treatment of oily wastewater due to their uniform chemical composition and intrinsic porosity. However, the real separation performance is still limited by broking the metal-ligand bonds of conventional MOF materials in extreme chemical and mechanical environments, such as acidic, alkaline, saline, organic, and abrasion. Herein, we provide a metal hydroxide-organic framework (MHOF) composite mesh membrane for high-efficient oil/water separation by simply growing Ni2(OH)2 clusters onto a polydopamine (PDA)-modified stainless-steel mesh (SSM). Compared with conventional MOF materials, our membrane possesses ultra-durable underwater superoleophobicity by taking advantages of its strong chemical bridging, rich hydrophilic groups, and rough surface morphology, which enables a 1 μL water droplet to spread to 0° contact angle within <100 ms and also obtains an ultra-low underwater oil adhesion force ∼1.9 μN. Separation of both oil/water mixtures and oil-in-water emulsions can be achieved by this Ni-based MHOF mesh membrane with high separation efficiency >99.7 % and large permeate flux >57,000 L m−2 h−1. Furthermore, the Ni2(OH)2@PDA-SSM mesh membrane exhibits excellent anti-oil-fouling, chemical stability and abrasion resistance, which shows a promising candidate for practical applications. This study provides a rational strategy to construct high-performance MHOF membranes for oil/water separation.

Abstract Image

具有超耐久水下超疏油性的镍基金属氢氧化物-有机框架网膜,用于高效油水分离
近来,具有超润湿性的 MOF 基油水分离膜因其化学成分均匀、固有孔隙率高而在含油废水处理领域备受关注。然而,在酸性、碱性、盐溶液、有机物和磨损等极端化学和机械环境下,传统 MOF 材料的金属配位键断裂,其实际分离性能仍然受到限制。在此,我们通过在聚多巴胺(PDA)改性不锈钢网(SSM)上简单地生长 Ni2(OH)2 簇,提供了一种用于高效油水分离的金属氢氧化物-有机框架(MHOF)复合网膜。与传统的 MOF 材料相比,我们的膜利用其强化学架桥、丰富的亲水基团和粗糙的表面形态等优势,具有超持久的水下超疏水性,可使 1 μL 的水滴在 <100 毫秒内扩散到 0° 接触角,同时还获得了 1.9 μN 的超低水下油附着力。这种镍基 MHOF 网膜可实现油水混合物和水包油乳状液的分离,分离效率高达 99.7 %,渗透通量大达 57,000 L m-2 h-1。此外,Ni2(OH)2@PDA-SSM 网膜还表现出优异的抗油污性、化学稳定性和耐磨性,具有良好的实际应用前景。这项研究为构建用于油/水分离的高性能 MHOF 膜提供了一种合理的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信