Low chemical-expansion and self-catalytic nickel-substituted strontium cobaltite perovskite four-channel hollow fibre membrane for partial oxidation of methane

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yongfan Zhu , Meng Wu , Wanglin Zhou , Jinkun Tan , Zhicheng Zhang , Guangru Zhang , Zhengkun Liu , Gongping Liu , Wanqin Jin
{"title":"Low chemical-expansion and self-catalytic nickel-substituted strontium cobaltite perovskite four-channel hollow fibre membrane for partial oxidation of methane","authors":"Yongfan Zhu ,&nbsp;Meng Wu ,&nbsp;Wanglin Zhou ,&nbsp;Jinkun Tan ,&nbsp;Zhicheng Zhang ,&nbsp;Guangru Zhang ,&nbsp;Zhengkun Liu ,&nbsp;Gongping Liu ,&nbsp;Wanqin Jin","doi":"10.1016/j.memsci.2024.123454","DOIUrl":null,"url":null,"abstract":"<div><div>In membrane reactors, the thermo-mechanical stability of the membrane determines the operability of the reaction, while the permeability and catalytic performance dictate the reaction process. A high chemical expansion coefficient can exacerbate the mismatch in the thermal expansion behaviour between the two sides of the membrane, potentially resulting in fracture. The low permeability and slow catalytic activity can slow the reaction process and result in an unsatisfactory product composition. Here, a Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.7</sub>Fe<sub>0.2</sub>Ni<sub>0.1</sub>O<sub>3-δ</sub> (BSCFN) four-channel hollow fibre membrane with a low chemical-expansion and high oxygen permeation flux has been successfully fabricated by phase inversion and a one-step thermal process (OSTP). Reaction sintering during the OSTP forms an NiO <em>in-situ</em> exsolution phase on the membrane surface, and A-site stoichiometry excess occurs, improves the oxygen permeation flux, and provides the membrane with self-catalytic ability during the partial oxidation of methane (POM) reactions. Consequently, the BSCFN membrane shows excellent performance; exhibiting an oxygen flux of 11.75 mL cm<sup>−2</sup>·min<sup>−1</sup> at 900 °C. Furthermore, the self-catalytic BSCFN membrane has a good hydrogen production of 10.1 mL cm<sup>−2</sup>·min<sup>−1</sup> during the POM process, which is 7.5 times higher than that of Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> membranes (1.87 mL cm<sup>−2</sup>·min<sup>−1</sup>). This offers a viable strategy for the development of membrane reactor applications.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123454"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010482","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In membrane reactors, the thermo-mechanical stability of the membrane determines the operability of the reaction, while the permeability and catalytic performance dictate the reaction process. A high chemical expansion coefficient can exacerbate the mismatch in the thermal expansion behaviour between the two sides of the membrane, potentially resulting in fracture. The low permeability and slow catalytic activity can slow the reaction process and result in an unsatisfactory product composition. Here, a Ba0.5Sr0.5Co0.7Fe0.2Ni0.1O3-δ (BSCFN) four-channel hollow fibre membrane with a low chemical-expansion and high oxygen permeation flux has been successfully fabricated by phase inversion and a one-step thermal process (OSTP). Reaction sintering during the OSTP forms an NiO in-situ exsolution phase on the membrane surface, and A-site stoichiometry excess occurs, improves the oxygen permeation flux, and provides the membrane with self-catalytic ability during the partial oxidation of methane (POM) reactions. Consequently, the BSCFN membrane shows excellent performance; exhibiting an oxygen flux of 11.75 mL cm−2·min−1 at 900 °C. Furthermore, the self-catalytic BSCFN membrane has a good hydrogen production of 10.1 mL cm−2·min−1 during the POM process, which is 7.5 times higher than that of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes (1.87 mL cm−2·min−1). This offers a viable strategy for the development of membrane reactor applications.

Abstract Image

用于甲烷部分氧化的低化学膨胀和自催化镍取代锶钴过氧化物四通道中空纤维膜
在膜反应器中,膜的热机械稳定性决定了反应的可操作性,而渗透性和催化性能则决定了反应过程。高化学膨胀系数会加剧膜两侧热膨胀行为的不匹配,可能导致断裂。低渗透性和缓慢的催化活性会减缓反应过程,导致产品成分不理想。在这里,通过相反转和一步热处理(OSTP),成功地制造出了具有低化学膨胀和高氧气渗透通量的 Ba0.5Sr0.5Co0.7Fe0.2Ni0.1O3-δ(BSCFN)四通道中空纤维膜。OSTP 过程中的反应烧结在膜表面形成了 NiO 原位外溶解相,A 位化学计量过剩,提高了透氧通量,并使膜在甲烷部分氧化(POM)反应中具有自催化能力。因此,BSCFN 膜表现出卓越的性能;在 900 °C 时,氧气通量达到 11.75 mL cm-2-min-1。此外,自催化 BSCFN 膜在 POM 过程中的产氢量高达 10.1 mL cm-2-min-1,是 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 膜(1.87 mL cm-2-min-1)的 7.5 倍。这为开发膜反应器应用提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信