Bifunctional catalysis on water splitting reaction by graphitic carbon supported NiO, NiS and NiSe nanoparticles

Mousumi Mondal , Anirban Ghosh , Sujit Kumar Ghosh , Swapan Kumar Bhattacharya
{"title":"Bifunctional catalysis on water splitting reaction by graphitic carbon supported NiO, NiS and NiSe nanoparticles","authors":"Mousumi Mondal ,&nbsp;Anirban Ghosh ,&nbsp;Sujit Kumar Ghosh ,&nbsp;Swapan Kumar Bhattacharya","doi":"10.1016/j.rinma.2024.100625","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we have synthesized NiO, NiS and NiSe nanoparticles by similar hydrothermal method and the electrocatalytic activities of the graphite carbon-supported synthesized materials have been compared in reference to hydrogen and oxygen evolution reactions (HER and OER) in aqueous acidic and alkaline media respectively. The as-synthesized nanoparticles have been characterized by using powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopic studies. The best electrocatalyst, NiSe provides a current density of 10 mA cm<sup>−2</sup> at 259 mV overpotential for OER in 1.0 M KOH, which is superior to that of the state-of-the-art catalyst RuO<sub>2</sub> in the same environment. For HER the best electrocatalyst, NiSe provides a current density of 10 mA cm<sup>−2</sup> at 49.5 mV overpotential in 0.5 M H<sub>2</sub>SO<sub>4</sub>, which is again superior to Pt wire electrode. The order of electrocatalytic activity in both HER and OER has been found to follow the sequence: NiSe &gt; NiS &gt; NiO under the same electrochemical conditions, as have been evident from cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopic studies. While the electrochemical surface area is increased by 16.4 % and 37.3 % on changing the electrocatalyst from NiO to NiS and NiSe respectively, the chronoamperometric current densities are increased by 429 % and 635 % at 0.8 V for OER and 548 % and 9733 % at −0.4V for HER on changing the same materials. Thus, the enhancement in catalytic activity hangs mainly on the material characteristics besides the morphological improvement.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"24 ","pages":"Article 100625"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590048X24000992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we have synthesized NiO, NiS and NiSe nanoparticles by similar hydrothermal method and the electrocatalytic activities of the graphite carbon-supported synthesized materials have been compared in reference to hydrogen and oxygen evolution reactions (HER and OER) in aqueous acidic and alkaline media respectively. The as-synthesized nanoparticles have been characterized by using powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopic studies. The best electrocatalyst, NiSe provides a current density of 10 mA cm−2 at 259 mV overpotential for OER in 1.0 M KOH, which is superior to that of the state-of-the-art catalyst RuO2 in the same environment. For HER the best electrocatalyst, NiSe provides a current density of 10 mA cm−2 at 49.5 mV overpotential in 0.5 M H2SO4, which is again superior to Pt wire electrode. The order of electrocatalytic activity in both HER and OER has been found to follow the sequence: NiSe > NiS > NiO under the same electrochemical conditions, as have been evident from cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopic studies. While the electrochemical surface area is increased by 16.4 % and 37.3 % on changing the electrocatalyst from NiO to NiS and NiSe respectively, the chronoamperometric current densities are increased by 429 % and 635 % at 0.8 V for OER and 548 % and 9733 % at −0.4V for HER on changing the same materials. Thus, the enhancement in catalytic activity hangs mainly on the material characteristics besides the morphological improvement.

Abstract Image

石墨碳支撑的 NiO、NiS 和 NiSe 纳米颗粒对水分离反应的双功能催化作用
在这项工作中,我们采用类似的水热法合成了 NiO、NiS 和 NiSe 纳米粒子,并比较了石墨碳支撑合成材料在酸性和碱性水介质中分别进行氢和氧进化反应(HER 和 OER)的电催化活性。通过粉末 X 射线衍射、傅立叶变换红外光谱和扫描电子显微镜研究对合成的纳米颗粒进行了表征。最佳电催化剂 NiSe 在 1.0 M KOH 中,过电位为 259 mV 时,OER 的电流密度为 10 mA cm-2,优于在相同环境中使用的最先进催化剂 RuO2。对于 HER 最佳电催化剂,NiSe 在 0.5 M H2SO4 中的过电位为 49.5 mV 时的电流密度为 10 mA cm-2,同样优于铂丝电极。研究发现,HER 和 OER 的电催化活性顺序如下在相同的电化学条件下,NiSe、NiS、NiO 的电催化活性顺序依次为:NiSe、NiS、NiO。将电催化剂从 NiO 改为 NiS 和 NiSe 后,电化学表面积分别增加了 16.4% 和 37.3%,而改变相同的材料后,OER 在 0.8V 时的时变电流密度分别增加了 429% 和 635%,HER 在-0.4V 时分别增加了 548% 和 9733%。因此,催化活性的提高主要取决于材料的特性,而不是形态的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信