Amann Benjamin , Chaumillon Eric , Bertin Xavier , Pignon-Mussaud Cécilia , Marie-Claire Perello , Christine Dupuy , Long Nathalie , Schmidt Sabine
{"title":"Understanding sediment and carbon accumulation in macrotidal minerogenic saltmarshes for climate resilience","authors":"Amann Benjamin , Chaumillon Eric , Bertin Xavier , Pignon-Mussaud Cécilia , Marie-Claire Perello , Christine Dupuy , Long Nathalie , Schmidt Sabine","doi":"10.1016/j.geomorph.2024.109465","DOIUrl":null,"url":null,"abstract":"<div><div>Coastal saltmarshes play an essential role in providing services such as sediment and carbon storage, coastal protection and support for biodiversity. Despite their importance, understanding the factors controlling sediment and carbon accumulation in these minerogenic saltmarshes remains challenging due to their diversity and site-specific characteristics. Understanding the respective role of these drivers is essential for effective coastal management, particularly for mitigating the impacts of climate change. This study evaluates the control of forcing factors on the lateral and vertical morphological evolution and carbon burial rates of three minerogenic saltmarshes located on the French Atlantic coast (Pertuis Charentais region). By focusing on these sites, the study isolates specific factors such as wind and wave exposure, inundation frequency, and sediment availability, while minimizing confounding influences like climate and tidal range. Results reveal significant lateral expansion of saltmarsh boundaries towards the sea across all sites, with the highest rates of progradation observed in the protected areas influenced by geomorphological features such as sand spits and sheltered bay heads. Sediment and mass accumulation rates (SAR; MAR), derived from <sup>210</sup>Pb and <sup>137</sup>Cs profiles of sediment cores (<em>n</em> = 14), range from 0.48 to 2.22 cm yr<sup>−1</sup>, among the highest reported globally, with notable variability within and between sites. Inundation frequency and accommodation space explain SAR variability within sites, while sediment availability predominantly determines spatial differences in vertical accumulation rates between sites. Organic carbon burial rates range from 75 to 345 gC m<sup>−2</sup> yr<sup>−1</sup>, and show a strong correlation with SAR (<em>r</em> = 0.9, <em>p</em> <em><</em> 0.001, <em>n</em> = 13) but no dependence on carbon content or density (<em>r</em> = 0.2, <em>p</em> <em>></em> 0.05, n = 13). This highlights the role of sediment input in the accumulation and sequestration of carbon by minerogenic saltmarshes. Furthermore, isotopic analysis indicates a marine source dominance in organic carbon sediment. This research provides insights into how different environmental conditions affect saltmarsh morphological evolution and carbon sequestration rates, informing targeted coastal management strategies focused on enhancing ecosystem resilience and climate resilience.</div></div>","PeriodicalId":55115,"journal":{"name":"Geomorphology","volume":"467 ","pages":"Article 109465"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomorphology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169555X24004173","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal saltmarshes play an essential role in providing services such as sediment and carbon storage, coastal protection and support for biodiversity. Despite their importance, understanding the factors controlling sediment and carbon accumulation in these minerogenic saltmarshes remains challenging due to their diversity and site-specific characteristics. Understanding the respective role of these drivers is essential for effective coastal management, particularly for mitigating the impacts of climate change. This study evaluates the control of forcing factors on the lateral and vertical morphological evolution and carbon burial rates of three minerogenic saltmarshes located on the French Atlantic coast (Pertuis Charentais region). By focusing on these sites, the study isolates specific factors such as wind and wave exposure, inundation frequency, and sediment availability, while minimizing confounding influences like climate and tidal range. Results reveal significant lateral expansion of saltmarsh boundaries towards the sea across all sites, with the highest rates of progradation observed in the protected areas influenced by geomorphological features such as sand spits and sheltered bay heads. Sediment and mass accumulation rates (SAR; MAR), derived from 210Pb and 137Cs profiles of sediment cores (n = 14), range from 0.48 to 2.22 cm yr−1, among the highest reported globally, with notable variability within and between sites. Inundation frequency and accommodation space explain SAR variability within sites, while sediment availability predominantly determines spatial differences in vertical accumulation rates between sites. Organic carbon burial rates range from 75 to 345 gC m−2 yr−1, and show a strong correlation with SAR (r = 0.9, p< 0.001, n = 13) but no dependence on carbon content or density (r = 0.2, p> 0.05, n = 13). This highlights the role of sediment input in the accumulation and sequestration of carbon by minerogenic saltmarshes. Furthermore, isotopic analysis indicates a marine source dominance in organic carbon sediment. This research provides insights into how different environmental conditions affect saltmarsh morphological evolution and carbon sequestration rates, informing targeted coastal management strategies focused on enhancing ecosystem resilience and climate resilience.
期刊介绍:
Our journal''s scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics.