Xinyan Zhou , Sifan Qiao , Zhenzhen Zhao , Meiqi Liu , Kexin Song , Fuxi Liu , Nailin Yue , Xiujuan Li , Meng Zou , Wei Zhang
{"title":"Electro-functionalized 2D nitrogen-carbon nanosheets decorated with symbiotic cobalt single-atoms/clusters","authors":"Xinyan Zhou , Sifan Qiao , Zhenzhen Zhao , Meiqi Liu , Kexin Song , Fuxi Liu , Nailin Yue , Xiujuan Li , Meng Zou , Wei Zhang","doi":"10.1016/j.jechem.2024.09.052","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) materials loaded with single atoms and clusters are being set at the forefront of catalysis due to their distinctive geometric and electronic features. However, the usually-complicated synthesis procedures impede in-depth clarification of their catalytic mechanisms. To this end, herein we developed an efficient one-step dimension-reduction carbonization strategy, with which we successfully architected a highly-efficient catalyst for oxygen reduction reaction (ORR), featured with symbiotic cobalt single atoms and clusters decorated in two-dimensional (2D) ultra-thin (3.5 nm thickness) nitrogen-carbon nanosheets. The synergistic effects of the two components afford excellent oxygen reduction activity in alkaline media (<em>E</em><sub>1/2</sub> = 0.823 V <em>vs.</em> RHE) and thereof a high power density (146.61 mW cm<sup>−2</sup>) in an assembled Zn-air battery. As revealed by theoretical calculations, the cobalt clusters can regulate electrons surrounding those individual atoms and affect the adsorption of intermediate species. As a consequence, the derived active sites of single cobalt atoms lead to a significant improvement of the ORR performance. Thus, our work may fuel interests to delicate architecture of single atoms and clusters coexisting 2D support toward optimal electrocatalytic performance.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 385-391"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006776","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials loaded with single atoms and clusters are being set at the forefront of catalysis due to their distinctive geometric and electronic features. However, the usually-complicated synthesis procedures impede in-depth clarification of their catalytic mechanisms. To this end, herein we developed an efficient one-step dimension-reduction carbonization strategy, with which we successfully architected a highly-efficient catalyst for oxygen reduction reaction (ORR), featured with symbiotic cobalt single atoms and clusters decorated in two-dimensional (2D) ultra-thin (3.5 nm thickness) nitrogen-carbon nanosheets. The synergistic effects of the two components afford excellent oxygen reduction activity in alkaline media (E1/2 = 0.823 V vs. RHE) and thereof a high power density (146.61 mW cm−2) in an assembled Zn-air battery. As revealed by theoretical calculations, the cobalt clusters can regulate electrons surrounding those individual atoms and affect the adsorption of intermediate species. As a consequence, the derived active sites of single cobalt atoms lead to a significant improvement of the ORR performance. Thus, our work may fuel interests to delicate architecture of single atoms and clusters coexisting 2D support toward optimal electrocatalytic performance.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy